【題目】我們把三邊長的比為345的三角形稱為完全三角形.記命題A “完全三角形是直角三角形”.若命題B是命題A的逆命題,請寫出命題B_________________________;并寫出一個例子(該例子能判斷命題B是錯誤的):________________________________.

【答案】直角三角形是完全三角形; 等腰直角三角形,是直角三角形,但三邊比是:11,不是完全三角形.

【解析】

交換原命題的題設(shè)與結(jié)論即可得到其逆命題;根據(jù)完全三角形的定義舉出反例進(jìn)行解答即可.

解:命題B:直角三角形是完全三角形;

例如:等腰直角三角形,是直角三角形,但三邊比是:11,不是完全三角形.

故答案為:直角三角形是完全三角形;等腰直角三角形,是直角三角形,但三邊比是:11,不是完全三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,延長BC至點(diǎn)D,使DC=CB,延長DA

與⊙O的另一個交點(diǎn)為E,連結(jié)ACCE。

1)求證:B=D

2)若AB=4,BC-AC=2,求CE的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以點(diǎn)P(-1,0)為圓心的圓,交x軸于B、C兩點(diǎn)(BC的左側(cè)),交y軸于A、D兩點(diǎn)(AD的下方),AD=,將ABC繞點(diǎn)P旋轉(zhuǎn)180°,得到MCB.

(1)求B、C兩點(diǎn)的坐標(biāo);

(2)請在圖中畫出線段MB、MC,并判斷四邊形ACMB的形狀(不必證明),求出點(diǎn)M的坐標(biāo);

(3)動直線l從與BM重合的位置開始繞點(diǎn)B順時針旋轉(zhuǎn),到與BC重合時停止,設(shè)直線lCM交點(diǎn)為E,點(diǎn)QBE的中點(diǎn),過點(diǎn)EEGBCG,連接MQ、QG.請問在旋轉(zhuǎn)過程中∠MQG的大小是否變化?若不變,求出∠MQG的度數(shù);若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家16月份的用水量統(tǒng)計如圖所示,關(guān)于這組數(shù)據(jù),下列說法錯誤的是 ).

A、眾數(shù)是6 B、平均數(shù)是5 C、中位數(shù)是5 D、方差是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)a0)的圖象與x軸交于A、B兩點(diǎn),(AB左側(cè),且OAOB),與y軸交于點(diǎn)C.

1)求C點(diǎn)坐標(biāo),并判斷b的正負(fù)性;

2)設(shè)這個二次函數(shù)的圖像的對稱軸與直線AC交于點(diǎn)D,已知DCCA=12,直線BDy軸交于點(diǎn)E,連接BC,

①若BCE的面積為8,求二次函數(shù)的解析式;

②若BCD為銳角三角形,請直接寫出OA的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,2),B(p,q)在直線上,拋物線m經(jīng)過點(diǎn)B、C(p+4,q),且它的頂點(diǎn)N在直線l.

(1)B(-2,1),

①請在平面直角坐標(biāo)系中畫出直線l與拋物線m的示意圖;

②設(shè)拋物線m上的點(diǎn)Q的模坐標(biāo)為e(-2≤e≤0)過點(diǎn)Qx軸的垂線,與直線l交于點(diǎn)H.QH=d,當(dāng)de的增大面增大時,求e的取值范圍;

(2)拋物線my軸交于點(diǎn)F,當(dāng)拋物線mx軸有唯一交點(diǎn)時,判斷NOF的形狀并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線經(jīng)過正方形的頂點(diǎn),先分別過此正方形的頂點(diǎn)、于點(diǎn)于點(diǎn).然后再以正方形對角線的交點(diǎn)為端點(diǎn),引兩條相互垂直的射線分別與交于,兩點(diǎn).若,,則線段長度的最小值是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BC是半⊙O的直徑,A是⊙O上一點(diǎn),過點(diǎn)的切線交CB的延長線于點(diǎn)P,過點(diǎn)B的切線交CA的延長線于點(diǎn)EAPBE相交于點(diǎn)F

1)求證:BFEF;

2)若AF,半⊙O的半徑為2,求PA的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,ABAC,過點(diǎn)DDEAD交直線AC于點(diǎn)E,點(diǎn)O是對角線AC的中點(diǎn),點(diǎn)F是線段AD上一點(diǎn),連接FO并延長交BC于點(diǎn)G

1)如圖1,若AC4cosCAD,求△ADE的面積;

2)如圖2,點(diǎn)HDC是延長線上一點(diǎn),連接HF,若∠H30°DEBG,求證:DHCE+FH

查看答案和解析>>

同步練習(xí)冊答案