【題目】如圖,BC是半⊙O的直徑,A是⊙O上一點(diǎn),過(guò)點(diǎn)的切線交CB的延長(zhǎng)線于點(diǎn)P,過(guò)點(diǎn)B的切線交CA的延長(zhǎng)線于點(diǎn)E,AP與BE相交于點(diǎn)F.
(1)求證:BF=EF;
(2)若AF=,半⊙O的半徑為2,求PA的長(zhǎng)度.
【答案】(1)見(jiàn)解析;(2).
【解析】
(1)連接OA,可得∠E+∠C=∠EAF+∠OAC=90°,再根據(jù)OA=OC,即可解答
(2)連接AB,可得∠OAP=∠OBE=90°,且BF=AF=1.5,根據(jù)三角函數(shù)求出PB=,
再證明△APB∽△CPA,即可解答
(1)證明:連接OA,
∵AF、BF為半⊙O的切線,
∴AF=BF,∠FAO=∠EBC=90°,
∴∠E+∠C=∠EAF+∠OAC=90°,
∵OA=OC,
∴∠C=∠OAC,
∴∠E=∠EAF,
∴AF=EF,
∴BF=EF;
(2)解:連接AB,
∵AF、BF為半⊙O的切線,
∴∠OAP=∠OBE=90°,且BF=AF=1.5,
又∵tan∠P= ,即 ,
∴PB= ,
∵∠PAE+∠OAC=∠AEB+∠OCA=90°,且∠OAC=∠OCA,
∴∠PAE=∠AEB,∠P=∠P,
∴△APB∽△CPA,
∴ ,即PA2=PBPC,
∴ ,解得PA= .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價(jià)x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.
(1)求y與x的函數(shù)解析式;
(2)設(shè)該水果銷售店試銷草莓獲得的利潤(rùn)為W元,求W的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們把三邊長(zhǎng)的比為3∶4∶5的三角形稱為完全三角形.記命題A: “完全三角形是直角三角形”.若命題B是命題A的逆命題,請(qǐng)寫(xiě)出命題B: _________________________;并寫(xiě)出一個(gè)例子(該例子能判斷命題B是錯(cuò)誤的):________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形ABCD的邊BC在直線l上,AD=5,AB=3,P為直線l上的點(diǎn),且△ADP是腰長(zhǎng)為5的等腰三角形,則BP=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當(dāng)水面的寬度為10m時(shí),橋洞與水面
的最大距離是5m.
(1)經(jīng)過(guò)討論,同學(xué)們得出三種建立平面直角坐標(biāo)系的方案(如下圖)
你選擇的方案是_____(填方案一,方案二,或方案三),則B點(diǎn)坐標(biāo)是______,求出你所選方案中的拋物線的表達(dá)式;
(2)因?yàn)樯嫌嗡畮?kù)泄洪,水面寬度變?yōu)?/span>6m,求水面上漲的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線的頂點(diǎn)為,與軸相交于點(diǎn),對(duì)稱軸為直線,點(diǎn)是線段的中點(diǎn).
(1)求拋物線的表達(dá)式;
(2)寫(xiě)出點(diǎn)的坐標(biāo)并求直線的表達(dá)式;
(3)設(shè)動(dòng)點(diǎn),分別在拋物線和對(duì)稱軸l上,當(dāng)以,,,為頂點(diǎn)的四邊形是平行四邊形時(shí),求,兩點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將點(diǎn)A(4,0)繞著原點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)60°角得到對(duì)應(yīng)點(diǎn)A',則點(diǎn)A' 的坐標(biāo)是 ( )
A. (4,-2)B. (2,)C. (2,)D. (,-2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,AC=3,BC=4,AB=5,點(diǎn)P在AB上(不與A、B重合),過(guò)P作PE⊥AC,PF⊥BC,垂足分別是E、F,連接EF,M為EF的中點(diǎn).
(1)請(qǐng)判斷四邊形PECF的形狀,并說(shuō)明理由;
(2)隨著P點(diǎn)在AB上位置的改變,CM的長(zhǎng)度是否也會(huì)改變?若不變,求CM的長(zhǎng)度;若有變化,求CM的變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某區(qū)規(guī)定學(xué)生每天戶外體育活動(dòng)時(shí)間不少于1小時(shí).為了解學(xué)生參加戶外體育活動(dòng)的情況,對(duì)部分學(xué)生每天參加戶外體育活動(dòng)的時(shí)間進(jìn)行了隨機(jī)抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如下的統(tǒng)計(jì)表(不完整).
組別 | 時(shí)間(小時(shí)) | 頻數(shù)(人數(shù)) | 頻率 |
A | 0≤t<0.5 | 20 | 0.05 |
B | 0.5≤t<1 | a | 0.3 |
C | 1≤t<1.5 | 140 | 0.35 |
D | 1.5≤t<2 | 80 | 0.2 |
E | 2≤t<2.5 | 40 | 0.1 |
請(qǐng)根據(jù)圖表中的信息,解答下列問(wèn)題:
(1)表中的a= ,將頻數(shù)分布直方圖補(bǔ)全;
(2)該區(qū)8000名學(xué)生中,每天戶外體育活動(dòng)的時(shí)間不足1小時(shí)的學(xué)生大約有多少名?
(3)若從參加戶外體育活動(dòng)時(shí)間最長(zhǎng)的3名男生和1名女生中隨機(jī)抽取兩名,請(qǐng)用畫(huà)樹(shù)狀圖或列表法求恰好抽到1名男生和1名女生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com