【題目】小新家、小華家和書店依次在東風(fēng)大街同一側(cè)(忽略三者與東風(fēng)大街的距離).小新小華兩人同時各自從家出發(fā)沿東風(fēng)大街勻速步行到書店買書,已知小新到達(dá)書店用了20分鐘,小華的步行速度是40米/分,設(shè)小新、小華離小華家的距離分別為y1(米)、y2(米),兩人離家后步行的時間為x(分),y1與x的函數(shù)圖象如圖所示,根據(jù)圖象解決下列問題:
(1)小新的速度為_____米/分,a=_____;并在圖中畫出y2與x的函數(shù)圖象
(2)求小新路過小華家后,y1與x之間的函數(shù)關(guān)系式.
(3)直接寫出兩人離小華家的距離相等時x的值.
【答案】(1)60;960;圖見解析;(2)y1=60x﹣240(4≤x≤20);
(3)兩人離小華家的距離相等時,x的值為2.4或12.
【解析】
(1)先根據(jù)小新到小華家的時間和距離即可求得小新的速度和小華家離書店的距離,然后根據(jù)小華的速度即可畫出y2與x的函數(shù)圖象;
(2)設(shè)所求函數(shù)關(guān)系式為y1=kx+b,由圖可知函數(shù)圖像過點(diǎn)(4,0),(20,960),則將兩點(diǎn)坐標(biāo)代入求解即可得到函數(shù)關(guān)系式;
(3)分小新還沒到小華家和小新過了小華家兩種情況,然后分別求出x的值即可.
(1)由圖可知,小新離小華家240米,用4分鐘到達(dá),則速度為240÷4=60米/分,
小新按此速度再走16分鐘到達(dá)書店,則a=16×60=960米,
小華到書店的時間為960÷40=24分鐘,
則y2與x的函數(shù)圖象為:
故小新的速度為60米/分,a=960;
(2)當(dāng)4≤x≤20時,設(shè)所求函數(shù)關(guān)系式為y1=kx+b(k≠0),
將點(diǎn)(4,0),(20,960)代入得:
,
解得:,
∴y1=60x﹣240(4≤x≤20時)
(3)由圖可知,小新到小華家之前的函數(shù)關(guān)系式為:y=240﹣6x,
①當(dāng)兩人分別在小華家兩側(cè)時,若兩人到小華家距離相同,
則240﹣6x=40x,
解得:x=2.4;
②當(dāng)小新經(jīng)過小華家并追上小華時,兩人到小華家距離相同,
則60x﹣240=40x,
解得:x=12;
故兩人離小華家的距離相等時,x的值為2.4或12.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D在BC上,∠ADB=∠BAC,BE平分∠ABC,過點(diǎn)E作EF/AD,交BC于點(diǎn)F
(1)求證:∠BAD=∠C;
(2)若∠C=20°,∠BAC=110°,求∠BEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+4與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B.
(1)求△AOB的面積;
(2)過B點(diǎn)作直線BC與x軸相交于點(diǎn)C,若△ABC的面積是16,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點(diǎn)D,E,F(xiàn)分別在BC,AB,CA上,且DE∥CA,DF∥BA,連接EF,則下列三種說法:
①如果EF=AD,那么四邊形AEDF是矩形
②如果EF⊥AD,那么四邊形AEDF是菱形
③如果AD⊥BC且AB=AC,那么四邊形AEDF是正方形
其中正確的有( )
A.3個
B.2個
C.1個
D.0個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是甲騎自行車與乙騎摩托車分別從A,B兩地向C地(A,B,C地在同一直線上)行駛過程中離B地的距離與行駛時間的關(guān)系圖,請你根據(jù)圖象回答下列問題:
(1)A,B兩地哪個距C地近?近多少?
(2)甲、乙兩人誰出發(fā)時間早?早多長時間?
(3)甲、乙兩人在途中行駛的平均速度分別為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是線段DE上一點(diǎn),∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE.
(1)求證:DE=BD+CE.
(2)如果是如圖2這個圖形,BD、CE、DE有什么數(shù)量關(guān)系?并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD,BC=BD,若∠ABD=∠BAC=,則∠BDC的度數(shù)為( )
A. 2B. 45°+C. 90°-D. 180°-3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D,E,F分別在三邊上,且BE=CD,BD=CF,G為EF的中點(diǎn).
(1)若∠A=40°,求∠B的度數(shù);
(2)試說明:DG垂直平分EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BCA=90°,CD 是邊 AB上的中線,分別過點(diǎn) C , D 作 BA , BC的平行線交于點(diǎn) E ,且 DE 交 AC 于點(diǎn) O ,連接 AE .
(1)求證:四邊形 ADCE 是菱形;
(2)若AC=2DE,求 sin∠CDB的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com