【題目】如圖,EFAD,∠1=∠2,∠BAC=70°.將求∠AGD的過程填寫完整

EFAD,(   

∴∠2=   .(兩直線平行,同位角相等

又∵∠1=∠2,(   

∴∠1=∠3.(   

ABDG.(   

∴∠BAC+   =180°(   

又∵∠BAC=70°,(   

∴∠AGD   

【答案】(已知),(兩直線平行,同位角相等),(已知),(等量代換),(內(nèi)錯角相等,兩直線平行),(兩直線平行,同旁內(nèi)角互補),(已知),110°

【解析】

試題推理填空題.本題主要考查了平行線的性質(zhì)和判定定理等知識點,理解平行線的性質(zhì)和判定定理是解此題的關(guān)鍵.根據(jù)題意,利用平行線的性質(zhì)和判定填空即可.

試題解析:

解:∵EF∥AD(已知),

∴∠2=∠3.(兩直線平行,同位角相等)

∵∠1=∠2,(已知)

∴∠1=∠3,(等量代換)

∴AB∥DG.(內(nèi)錯角相等,兩直線平行)

∴∠BAC+∠AGD=180°.(兩直線平行,同旁內(nèi)角互補)

∵∠BAC=70°,(已知)

∴∠AGD=110°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)4﹣8+6﹣10;

(2)(+)×(﹣24);

(3)(﹣2)2×5﹣(﹣2.5)÷0.5;

(4)﹣32+(﹣24)÷(﹣4)﹣(﹣3)3×(﹣).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了選拔學(xué)生參加“漢字聽寫大賽”,對九年級一班、二班各10名學(xué)生進行漢字聽寫測試,計分采用10分制(得分均取整數(shù)),成績達到6分或6分以上為及格,達到9分或10分為優(yōu)秀,成績?nèi)绫?所示,并制作了成績分析表(表2)

表1

 一班

5

8

8

9

8

10

10

8

5

5

 二班

10

6

6

9

10

4

5

7

10

8

表2

班級

平均數(shù)

中位數(shù)

眾數(shù)

方差

及格率

優(yōu)秀率

一班

7.6

8

a

3.82

70%

30%

二班

b

c

10

4.94

80%

40% 

(1)求表2中,a,b,c;

(2)有人說二班的及格率、優(yōu)秀率均高于一班,所以二班成績比一班成績好;但也有人堅定認為一班成績比二班成績好.請你給出支持一班成績好的兩條理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某車間的甲、乙兩名工人分別同時生產(chǎn)同種零件,他們一天生產(chǎn)零件y(個)與生產(chǎn)時間t(小時)的關(guān)系如圖所示.

(1)根據(jù)圖象回答:

①甲、乙中,誰先完成一天的生產(chǎn)任務(wù);在生產(chǎn)過程中,誰因機器故障停止生產(chǎn)多少小時;

②當t等于多少時,甲、乙所生產(chǎn)的零件個數(shù)相等;

(2)誰在哪一段時間內(nèi)的生產(chǎn)速度最快?求該段時間內(nèi),他每小時生產(chǎn)零件的個數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩車間共120人,其中甲車間人數(shù)比乙車間人數(shù)的4倍少5.

1求甲、乙兩車間各有多少人?

2若從甲、乙兩車間分別抽調(diào)工人,組成丙車間研制新產(chǎn)品,并使甲、乙、丙三個車間的人數(shù)比為1347,那么甲、乙兩車間要分別抽調(diào)多少工人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,點D是邊BC上的點(與B,C兩點不重合),過點D作DE∥AC,DF∥AB,分別交AB,AC于E,F(xiàn)兩點,下列說法正確的是( 。

A. 若AD⊥BC,則四邊形AEDF是矩形

B. 若AD垂直平分BC,則四邊形AEDF是矩形

C. 若BD=CD,則四邊形AEDF是菱形

D. 若AD平分∠BAC,則四邊形AEDF是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明元旦前到文具超市用15元買了若干練習(xí)本,元旦這一天,該超市開展優(yōu)惠活動,同樣的練習(xí)本比元旦前便宜0.2元,小明又用20.7元錢買練習(xí)本,所買練習(xí)本的數(shù)量比上一次多50%,小明元旦前在該超市買了多少本練習(xí)本?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】研究問題:一個不透明的盒中裝有若干個只有顏色不一樣的紅球與黃球,怎樣估算不同顏色球的數(shù)量? 操作方法:先從盒中摸出8個球,畫上記號放回盒中,再進行摸球?qū)嶒,摸球(qū)嶒灥囊螅合葦嚢杈鶆,每次摸出一個球,放回盒中,再繼續(xù).
活動結(jié)果:摸球?qū)嶒灮顒右还沧隽?0次,統(tǒng)計結(jié)果如下表:

球的顏色

無記號

有記號

紅色

黃色

紅色

黃色

摸到的次數(shù)

18

28

2

2

推測計算:由上述的摸球?qū)嶒灴赏扑悖?/span>
(1)盒中紅球、黃球各占總球數(shù)的百分比分別是多少?
(2)盒中有紅球多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)定義新運算“△”,對于任意有理數(shù)a,b,都有a△b=a2-ab+b,例如:3△5=32-3×5+5=-1,請根據(jù)上述知識解決問題:

(1)化簡:(x-1)△(2+x);

(2)若(1)中的代數(shù)式的值大于6而小于9,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案