【題目】如圖,在等腰△ABC 中,∠BAC=120°,AB=AC=2,點 D 在邊 BC 上,CD=,將線段 CD 繞點 C 逆時針旋轉α°(其中 0<α≤360)到 CE,連接AE,以 AB,AE 為邊作 ABFE,連接 DF,則 DF 的最大值為( )
A. + B. + C. 2+ D. +2
【答案】B
【解析】
作平行四邊形 ABPC,連接 PA 交 BC 于點 O,連接 PF.解直角三角形求得 PD= ,由四邊形 PCEF 是平行四邊形,推出 PF=EC=,推出點
F 的運動軌跡是以 P 為圓心為半徑的圓,由此即可解決問題.
作平行四邊形 ABPC,連接 PA 交 BC 于點 O,連接 PF.
∵四邊形 ABPC 是平行四邊形,AB=BC,
∴四邊形 ABPC 是菱形,
∴PA⊥BC,
∵AB=AC=2,∠ABC=120°,
∴∠BAO=60°,
∴OA=OP=,OB=OC=3 ,
∵CD=,
∴OD=2,
∴PD= =,
∵AB∥PC∥PE,AB=PC=EF,
∴四邊形 PCEF 是平行四邊形,
∴PF=CE=CD=,
∴點 F 的運動軌跡是以 P 為圓心為半徑的圓,
∴DF 的最大值故答案選:B.
科目:初中數學 來源: 題型:
【題目】王大伯要做一張如圖所示的梯子,梯子共有7級互相平行的踏板,每相鄰兩級踏板之間的距離都相等.已知梯子最上面一級踏板的長度A1B1=0.5m,最下面一級踏板的長度A7B7=0.8m.則A3B3踏板的長度為( )
A. 0.6m B. 0.65m C. 0.7m D. 0.75m
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在直角坐標平面內,二次函數圖象的頂點為A(1,﹣4),且過點B(3,0).
(1)求該二次函數的解析式;
(2)將該二次函數圖象向右平移幾個單位,可使平移后所得圖象經過坐標原點?并直接寫出平移后所得圖象與x軸的另一個交點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是二次函數y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為直線x=﹣1,給出以下結論,①ab<0,②b2﹣4ac>0,③4b+c<0,④若B(﹣,y1)、C(﹣,y2)為函數圖象上的兩點,則y1>y2,⑤當﹣3≤x≤1時,y≥0,其中正確的結論是( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,分別以AB、AD為邊向外作等邊△ABE、△ADF,延長CB交AE于點G,點G在點A、E之間,連接CE、CF,EF,則以下四個結論一定正確的是:①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等邊△;④CG⊥AE( )
A. 只有①② B. 只有①②③ C. 只有③④ D. ①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC 中,∠C=90°,將△ABC 繞點 C 順時針旋轉 90°,得到△DEC(其中點 D、E 分別是 A、B 兩點旋轉后的對應點).
(1)請畫出旋轉后的△DEC;
(2)試判斷 DE 與 AB 的位置關系,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=6.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上,若四邊形EGFH是菱形,則AE的長是_________________。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經過點D,分別交AC,AB于點E,F.
(1)試判斷直線BC與⊙O的位置關系,并說明理由;
(2)若BD=2,BF=2,求陰影部分的面積(結果保留π).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:在△ABC中,AB、BC邊上的垂直平分線相交于點P.若∠BAC=50°,則∠BPC的度數為( 。
A.100°B.110°C.115°D.120°
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com