【題目】一個圓柱的軸截面平行于投影面,圓柱的正投影是鄰邊長分別為4 cm,3 cm的矩形,求圓柱的表面積和體積.

【答案】①當(dāng)圓柱底面圓的半徑為1.5cm,高為4 cm時,表面積為:π cm2,體積為:cm3

②當(dāng)圓柱底面圓的半徑為2cm,高為3 cm時,表面積為:20π(cm2),體積為:12π(cm3)

【解析】

根據(jù)平行投影的性質(zhì)得出①當(dāng)圓柱底面圓的半徑為1.5 cm,高為4 cm,②當(dāng)圓柱底面圓的半徑為2 cm,高為3 cm,進(jìn)而分別求出其表面積和體積即可.

∵一個圓柱的軸截面平行于投影面,圓柱的正投影是鄰邊長分別為4 cm,3 cm的矩形,

∴①當(dāng)圓柱底面圓的半徑為1.5 cm,高為4 cm,

則圓柱的表面積為2π××412ππ=π(cm2)

體積為π×49π(cm3);

②當(dāng)圓柱底面圓的半徑為2 cm,高為3 cm

則圓柱的表面積為2π×2×32π×2212π20π(cm2)

體積為π×22×312π(cm3)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示.有下列結(jié)論:①b2-4ac<0;②ab>0;③a-b+c=0;④4a+b=0;⑤當(dāng)y=2時,x只能等于0.其中正確的是( )

A. ①④ B. ③④ C. ②⑤ D. ③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+2mx﹣m2+1的對稱軸是直線x=1.

(1)求拋物線的表達(dá)式;

(2)點D(n,y1),E(3,y2)在拋物線上,若y1y2,請直接寫出n的取值范圍;

(3)設(shè)點M(p,q)為拋物線上的一個動點,當(dāng)﹣1p2時,點M關(guān)于y軸的對稱點都在直線y=kx﹣4的上方,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,的中點.的半徑為3,動點從點出發(fā)沿方向以每秒1個單位的速度向點運動,設(shè)運動時間為.

1)當(dāng)以為半徑的相切時,求的值;

2)探究:在線段上是否存在點,使得與直線相切,且與相外切?若存在,求出此時的值及相應(yīng)的的半徑;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解江城中學(xué)學(xué)生的身高情況,隨機(jī)對該校男生、女生的身高進(jìn)行抽樣調(diào)查.已知抽取的樣本中,男生、女生的人數(shù)相同,根據(jù)所得數(shù)據(jù)繪制成如圖所示的統(tǒng)計圖表.

組別

身高(cm)

A

x<150

B

150≤x<155

C

155≤x<160

D

160≤x<165

E

x≥165

  

根據(jù)圖表中提供的信息,回答下列問題:

(1)在樣本中,男生身高的中位數(shù)落在________(填組別序號),女生身高在B組的人數(shù)有________人;

(2)在樣本中,身高在150≤x155之間的人數(shù)共有________人,身高人數(shù)最多的在________(填組別序號);

(3)已知該校共有男生500人、女生480人,請估計身高在155≤x165之間的學(xué)生有多少人

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yx2+bx3經(jīng)過點A1,0),頂點為點M

1)求拋物線的表達(dá)式及頂點M的坐標(biāo);

2)求∠OAM的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,BC=2cm,ABC=60°若動點P以2cm/s的速度從B點出發(fā)沿著B→A的方向運動點Q以1cm/s的速度從A點出發(fā)沿著AC的方向運動,當(dāng)點P到達(dá)點A時點Q也隨之停止運動設(shè)運動時間為ts),當(dāng)APQ是直角三角形時,t的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形網(wǎng)格中,建立如圖所示的平面直角坐標(biāo)系xOy,ABC的三個頂點都在格點上,點A的坐標(biāo)(4,4),請解答下列問題:

(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1,并寫出點A1、B1、C1的坐標(biāo);

(2)將△ABC繞點C逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2B2C2,并求出點AA2的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的方格紙(每個小方格都是邊長為1個單位的正方形)中建立平面直角坐標(biāo)系,△ABC的三個頂點都在格點上,點A的坐標(biāo)為(2,4),請解答下列問題:

1)畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點B1的坐標(biāo);

2)畫出△ABC繞原點O逆時針旋轉(zhuǎn)90°后得到的△A2B2C2

3)求出(2)中C點旋轉(zhuǎn)到C2點所經(jīng)過的路徑長(結(jié)果保留根號和x

查看答案和解析>>

同步練習(xí)冊答案