【題目】(2017浙江省臺州市)在平面直角坐標(biāo)系中,借助直角三角板可以找到一元二次方程的實(shí)數(shù)根.比如對于方程,操作步驟是:
第一步:根據(jù)方程的系數(shù)特征,確定一對固定點(diǎn)A(0,1),B(5,2);
第二步:在坐標(biāo)平面中移動一個直角三角板,使一條直角邊恒過點(diǎn)A,另一條直角邊恒過點(diǎn)B;
第三步:在移動過程中,當(dāng)三角板的直角頂點(diǎn)落在x軸上點(diǎn)C處時(shí),點(diǎn)C的橫坐標(biāo)m即為該方程的一個實(shí)數(shù)根(如圖1);
第四步:調(diào)整三角板直角頂點(diǎn)的位置,當(dāng)它落在x軸上另一點(diǎn)D處時(shí),點(diǎn)D的橫坐標(biāo)n即為該方程的另一個實(shí)數(shù)根.
(1)在圖2中,按照“第四步”的操作方法作出點(diǎn)D(請保留作出點(diǎn)D時(shí)直角三角板兩條直角邊的痕跡);
(2)結(jié)合圖1,請證明“第三步”操作得到的m就是方程的一個實(shí)數(shù)根;
(3)上述操作的關(guān)鍵是確定兩個固定點(diǎn)的位置,若要以此方法找到一元二次方程 (a≠0,≥0)的實(shí)數(shù)根,請你直接寫出一對固定點(diǎn)的坐標(biāo);
(4)實(shí)際上,(3)中的固定點(diǎn)有無數(shù)對,一般地,當(dāng)m1,n1,m2,n2與a,b,c之間滿足怎樣的關(guān)系時(shí),點(diǎn)P(m1,n1),Q(m2,n2)就是符合要求的一對固定點(diǎn)?
【答案】(1)作圖見解析;(2)證明見解析;(3)A(0,1),B(﹣,)或A(0,),B(﹣,c)等;(4),=.
【解析】試題(1)根據(jù)“第四步”的操作方法作出點(diǎn)D即可;
(2)過點(diǎn)B作BD⊥x軸于點(diǎn)D,根據(jù)△AOC∽△CDB,可得,進(jìn)而得出,即,據(jù)此可得m是方程的實(shí)數(shù)根;
(3)方程(a≠0)可化為,模仿研究小組作法可得一對固定點(diǎn)的坐標(biāo);
(4)先設(shè)方程的根為x,根據(jù)三角形相似可得,進(jìn)而得到,再根據(jù),可得,最后比較系數(shù)可得m1,n1,m2,n2與a,b,c之間的關(guān)系.
試題解析:(1)如圖所示,點(diǎn)D即為所求;
(2)如圖所示,過點(diǎn)B作BD⊥x軸于點(diǎn)D,根據(jù)∠AOC=∠CDB=90°,∠ACO=∠CBD,可得△AOC∽△CDB,∴,∴,∴m(5﹣m)=2,∴,∴m是方程的實(shí)數(shù)根;
(3)方程(a≠0)可化為,模仿研究小組作法可得:A(0,1),B(﹣,)或A(0,),B(﹣,c)等;
(4)如圖,P(m1,n1),Q(m2,n2),設(shè)方程的根為x,根據(jù)三角形相似可得,上式可化為,又∵,即,∴比較系數(shù)可得,=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一張透明的平行四邊形膠片沿對角線剪開,得到圖①中的兩張三角形膠片和.將這兩張三角形膠片的頂點(diǎn)B與頂點(diǎn)E重合,把繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn),這時(shí)AC與DF相交于點(diǎn)O.
(1)當(dāng)旋轉(zhuǎn)至如圖②位置,點(diǎn)B(E),C,D在同一直線上時(shí),∠AFD與∠DCA的數(shù)量關(guān)系是 .
(2)當(dāng)繼續(xù)旋轉(zhuǎn)至如圖③位置時(shí),(1)中的結(jié)論還成立嗎?請說明理由.
(3)在圖③中,連接BO,AD,探索BO與AD之間有怎樣的位置關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要在寬AB為20米的甌海大道兩邊安裝路燈,路燈的燈臂CD與燈柱BC成120°角,燈罩的軸線DO與燈臂CD垂直,當(dāng)燈罩的軸線DO通過公路路面的中心線(即O為AB的中點(diǎn))時(shí)照明效果最佳,若CD=米,則路燈的燈柱BC高度應(yīng)該設(shè)計(jì)為____米(計(jì)算結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校的一個數(shù)學(xué)興趣小組在本校學(xué)生中開展主題為“環(huán)廣西公路自行車世界巡回賽”的專題調(diào)查活動,取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,問卷調(diào)查的結(jié)果分為“非常了解”、“比較了解”、“基本了解”、“不太了解”四個等級,分別記作A、B、C、D;并根據(jù)調(diào)查結(jié)果繪制成如圖所示不完整的統(tǒng)計(jì)圖,請結(jié)合圖中信息解答下列問題:
(1)請求出本次被調(diào)查的學(xué)生共多少人,并將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(2)估計(jì)該校1500名學(xué)生中“C等級”的學(xué)生有多少人?
(3)在“B等級”的學(xué)生中,初三學(xué)生共有4人,其中1男3女,在這4個人中,隨機(jī)選出2人進(jìn)行采訪,則所選兩位同學(xué)中有男同學(xué)的概率是多少?請用列表法或樹狀圖的方法求解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)(a<0)圖象與x軸的交點(diǎn)A、B的橫坐標(biāo)分別為﹣3,1,與y軸交于點(diǎn)C,下面四個結(jié)論:
①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函數(shù)圖象上的兩點(diǎn),則y1>y2;③a=﹣c;④若△ABC是等腰三角形,則b=﹣.其中正確的有______(請將結(jié)論正確的序號全部填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,直線的函數(shù)解析式為,與軸交于點(diǎn),與軸交于點(diǎn).
(1)直接寫出點(diǎn)的坐標(biāo)________;點(diǎn)的坐標(biāo)________;
(2)若點(diǎn)為線段上的一個動點(diǎn),作軸于點(diǎn),軸于點(diǎn),連接,問:①若的面積為,求關(guān)于的函數(shù)關(guān)系式;②直接寫出的最小值________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABO中,AB⊥OB,OB=,AB=1,把△ABO繞點(diǎn)O旋轉(zhuǎn)150°后得到△A1B1O,則點(diǎn)A1坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
如圖,在正方形ABCD中,點(diǎn)E、F分別在CD、BC上,且BF=CE,連接BE、AF相交于點(diǎn)G,則下列結(jié)論不正確的是( )
A.BE=AF B.∠DAF=∠BEC C.∠AFB+∠BEC=90° D.AG⊥BE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與x軸的兩個交點(diǎn)分別為(﹣1,0),(3,0),對于下列結(jié)論:①2a+b=0;②abc<0;③a+b+c>0;④當(dāng)x>1時(shí),y隨x的增大而減小;其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com