【題目】如圖,已知AB是O的直徑,弦EDAB于點F,點C是劣弧AD上的動點(不與點A、D重合),連接BC交ED于點G.過點C作O的切線與ED的延長線交于點P.

(1)求證:PC=PG;

(2)當點G是BC的中點時,求證:;

(3)已知O的半徑為5,在滿足(2)的條件時,點O到BC的距離為,求此時CGP的面積.

【答案】(1)證明詳見解析;(2)證明詳見解析;(3)10.

【解析】

試題分析:(1)連結(jié)OC,根據(jù)切線的性質(zhì)得OCPC,根據(jù)余角的性質(zhì)得到B=OCG,等量代換得到PCG=BGF,根據(jù)對頂角相等得BGF=PGC,于是得到PGC=PCG,根據(jù)等腰三角形的判定定理即可得到結(jié)論;

(2)連結(jié)OG,由點G是BC的中點,根據(jù)垂徑定理的推論得OGBC,BG=CG,根據(jù)相似三角形的性質(zhì)得到,等量代換得到結(jié)論;

(3)連結(jié)OE,OG=OG=,在RtOBG中,利用勾股定理計算出BG=,再利用可計算出BF,從而得到OF=1,根據(jù)三角形的面積公式即可得到結(jié)論.

試題解析:(1)連結(jié)OC,如圖,

PC為O的切線,

OCPC,

∴∠OCG+PCG=90°,

EDAB,

∴∠B+BGF=90°,

OB=OC,

∴∠B=OCG,

∴∠PCG=BGF,

BGF=PGC,

∴∠PGC=PCG,

PC=PG;

(2)解:CG、BF、BO三者之間的數(shù)量關系為.理由如下:

連結(jié)OG,如圖,

點G是BC的中點,

OGBC,BG=CG,

∴∠OGB=90°,

∵∠OBG=GBF,

RtBOGRtBGF,

BG:BF=BO:BG,

;

(3)解:連結(jié)OE,如圖,

由(2)得OGBC,

OG=,

在RtOBG中,OB=5,

BG==,

由(2)得BG2=BOBF,

BF==4,

OF=1,

FG==2,

過P作PHBC于H,

PC=PG,

GH=CG=BG=

∵∠PHG=BFG=90°,BGF=DGH,

∴△BFG∽△PHG,

,即,

PH=

CGP=CGPH=××=10.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,MBC邊(不含端點B、C)上任意一點,PBC延長線上一點,N∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

證明:在邊AB上截取AE=MC,連ME

正方形ABCD中,∠B=∠BCD=90°,AB=BC

∴∠NMC=180°—∠AMN—∠AMB

=180°—∠B—∠AMB

=∠MAB=∠MAE

(下面請你完成余下的證明過程)

2)若將(1)中的正方形ABCD”改為正三角形ABC”(如圖2,N∠ACP的平分線上一點,則當∠AMN=60°時,結(jié)論AM=MN是否還成立?請說明理由.

3)若將(1)中的正方形ABCD”改為邊形ABCD…X”,請你作出猜想:當∠AMN=°時,結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)

1 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】可樂和奶茶含有大量的咖啡因,世界衛(wèi)生組織建議青少年每天攝入的咖啡因不能超過0.000085kg,將數(shù)據(jù)0.000085用科學記數(shù)法表示為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分解因式:(a+5)(a﹣5)+7(a+1)=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某同學5次數(shù)學小測驗的成績分別為(單位:分):90,85,90,95,100,則該同學這5次成績的眾數(shù)是( 。

A.90 B.85 C.95 D.100

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各式的值:
(1)(+)﹣
(2)(﹣3)2﹣|﹣|+
(3)x2﹣121=0;
(4)(x﹣5)3+8=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小青在八年級上學期的數(shù)學成績?nèi)缦卤硭荆?/span>

測評類型

平時測驗

期中考試

期末考試

成績

86

90

81

如果學期總評成績根據(jù)如圖所示的權(quán)重計算,小青該學期的總評成績是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線與y軸交于點C(0,3),與x軸交于點A、B,點A在點B的左邊,且B(3,0),AB=2

(1)求該拋物線的函數(shù)關系式;

(2)如果拋物線的對稱軸上存在一點P,使得APC的周長最小,求此時P點的坐標,并求出APC周長;

(3)設D為拋物線上一點,E為對稱軸上一點,若以點A、B、D、E為頂點的四邊形是平行四邊形,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,△ABC,∠ACB=2∠B,∠BAC的平分線AOBC于點D,HAO上一動點過點H作直線l⊥AOH,分別交直線AB、AC、BC、于點N、E、M.

(1)當直線l經(jīng)過點C時(如圖2),求證:BN=CD;

(2)當MBC中點時,寫出CECD之間的等量關系,并加以證明

(3)請直接寫出BN、CE、CD之間的等量關系

查看答案和解析>>

同步練習冊答案