【題目】如圖,排球運動員站在點處練習發(fā)球,將球從點正上方處發(fā)出,把球看成點,其運行的高度與運行的水平距離滿足關系式.已知球網(wǎng)與點的水平距離為,高度為,球場的邊界距點的水平距離為

)求的關系式(不要求寫出自變量的取值范圍).

)球能否越過球網(wǎng)?球會不會出界?請說明理由.

【答案】.()球能越過網(wǎng),會出界

【解析】試題分析:(1)根據(jù)題意可得拋物線經(jīng)過點,代入即可求得a值,從而得拋物線的解析式;(2)把x=9代入拋物線求得y的值,與2.43比較,即可得球是否過網(wǎng);把y=0代入解析式,解得x的值,與18比較,即可判定球是否出界.

試題解析:

)∵球從點正上方處發(fā)出,

點,

)當時,

,

所以球能過網(wǎng).

時,,

解得:;(舍去),

所以會出界.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,∠A+∠D=180°,∠1=3∠2,∠2=24°,點P是BC上的一點.

(1)請寫出圖中∠1的一對同位角,一對內錯角,一對同旁內角;

(2)求∠EFC與∠E的度數(shù);

(3)若∠BFP=46°,請判斷CE與PF是否平行?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,△DAC△EBC均是等邊三角形,點A、C、B在同一條直線上,且AE、BD分別與CD、CE交于點MN.

求證:(1AE=DB;

2△CMN為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】珍重生命,注意安全!同學們在上下學途中一定要注意騎車安全.小明騎單車上學,當他騎了一段時,想起要買某本書,于是又折回到剛經(jīng)過的新華書店,買到書后繼續(xù)去學校,以下是他本次所用的時間與路程的關系示意圖.根據(jù)圖中提供的信息回答下列問題:

1)小明家到學校的路程是多少米;

2)小明在書店停留了多少分鐘;

3)本次上學途中,小明一共行駛了多少米?一共用了多少分鐘?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為了節(jié)約用水,對自來水的收費標準作如下規(guī)定:每月每戶用水不超過10噸的部分,按2/噸收費;超過10噸的部分按25/噸收費.

1)若黃老師家5月份用水16噸,問應交水費多少元?

2)若黃老師家7月用水a噸,問應交水費多少元?(用a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,把矩形紙片OABC放入直角坐標系xOy中,使OA、OC分別落在x、y軸的正半軸上,連接AC,且AC=4

(1)求AC所在直線的解析式;

(2)將紙片OABC折疊,使點A與點C重合(折痕為EF),求折疊后紙片重疊部分的面積.

(3)求EF所在的直線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABCD中,點EBC的中點,連接AE并延長交DC的延長線于點F,連接BF

(1)求證:△ABE≌△FCE

(2)AFAD,求證:四邊形ABFC是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司研發(fā)1000件新產(chǎn)品,需要精加工后才能投放市場.現(xiàn)在甲、乙兩個工廠加工這批產(chǎn)品,已知甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用10天,而乙工廠每天加工的件數(shù)是甲工廠每天加工件數(shù)的1.25倍,公司需付甲工廠加工費用每天100元,乙工廠加工費用每天125元.

(1)甲、乙兩個工廠每天各能加工多少件新產(chǎn)品?

(2)兩個工廠同時合作完成這批產(chǎn)品,共付加工費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】★若兩個扇形滿足弧長的比等于它們半徑的比,則稱這兩個扇形相似.如圖,如果扇形AOB與扇形A1O1B1是相似扇形,且半徑OAO1A1k(k為不等于0的常數(shù)).那么下面四個結論:①∠AOBA1O1B1;②△AOB∽△A1O1B1;k;④扇形AOB與扇形A1O1B1的面積之比為k2.成立的個數(shù)為(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案