【題目】如圖,已知反比例函數(shù)與一次函數(shù)的圖象相交于點A、點D,且點A的橫坐標(biāo)為1,點D的縱坐標(biāo)為-1,過點A作AB⊥x軸于點B,△AOB的面積為1.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)若一次函數(shù)y=ax+b的圖像與x軸交于點C,求∠ACO的度數(shù).
(3)結(jié)合圖像直接寫出,當(dāng)時,x的取值范圍.
【答案】(1),;(2)∠ACO=45°;(3)0<<1 ,<-2
【解析】
(1)由△AOB的面積為1,點A的橫坐標(biāo)為1,求點A的縱坐標(biāo),確定反比例函數(shù)解析式,利用反比例函數(shù)解析式求D點坐標(biāo),利用“兩點法”求一次函數(shù)解析式;
(2)由一次函數(shù)解析式求C點坐標(biāo),再求AB、BC,在Rt△ABC中,求tan∠ACO的值,再求∠ACO的度數(shù);
(3)當(dāng)y1>y2時,y1的圖象在y2的上面,由此求出x的取值范圍.
解(1)如圖:SAOB=1,則
則反比例函數(shù)的解析式:
∴A(1,2),D(-2,-1)
設(shè)一次函數(shù)的解析式為,則
,
解得:.
∴一次函數(shù)的解析式為:(2)由直線y=x+1可知,C(-1,0),
則BC=OB+OC=2,AB=2,
所以,在Rt△ABC中,tan∠ACO==1,
故∠ACO=45°;
(3)由圖象可知,當(dāng)y1>y2時,x<-2或0<x<1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人一起步行到火車站,途中發(fā)現(xiàn)忘帶火車票了,于是甲立刻原速返回,乙繼續(xù)以原速步行前往火車站,甲取完火車票后乘出租車趕往火車站,途中與乙相遇,帶上乙一同前往,結(jié)果比預(yù)計早到3分鐘,他們與公司的路程(米)與時間(分)的函數(shù)關(guān)系如圖所示,則下列結(jié)論錯誤的是( )
A.他們步行的速度為每分鐘80米;B.出租車的速度為每分320米;
C.公司與火車站的距離為1600米;D.出租車與乙相遇時距車站400米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2019年端午節(jié)前夕,某商場投入13800元資金購進甲、乙兩種商品共500件,兩種商品的成本價和銷售價如下表所示:
商品 單價(元/件) | 成本價 | 銷售價 |
甲 | 24 | 36 |
乙 | 33 | 48 |
(1)該商場購進兩種商品各多少件?
(2)這批商品全部銷售完后,該商場共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標(biāo)為(1,n),且與x軸的一個交點在點(3,0)和(4,0)之間,則下列結(jié)論:①4a﹣2b+c>0;②3a+b>0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有兩個互異實根.其中正確結(jié)論的個數(shù)是( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+6(a≠0)交x軸于A(﹣4,0),B(2,0),在y軸上有一點E(0,﹣2),連接AE.
(1)求二次函數(shù)的表達式;
(2)點D是第二象限內(nèi)的拋物線上一動點.
①求△ADE面積最大值并寫出此時點D的坐標(biāo);
②若tan∠AED=,求此時點D坐標(biāo);
(3)連接AC,點P是線段CA上的動點,連接OP,把線段PO繞著點P順時針旋轉(zhuǎn)90°至PQ,點Q是點O的對應(yīng)點.當(dāng)動點P從點C運動到點A,則動點Q所經(jīng)過的路徑長等于 (直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2021年高考方案與高校招生政策都將有重大的變化,我市某部門為了了解政策的宣傳情況,對某初級中學(xué)學(xué)生進行了隨機抽樣調(diào)查,根據(jù)學(xué)生對政策的了解程度由高到低分為,,,四個等級,并對調(diào)查結(jié)果分析后繪制了如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息完成下列問題:
(1)求被調(diào)查學(xué)生的人數(shù),并將條形統(tǒng)計圖補充完整;
(2)求扇形統(tǒng)計圖中的等對應(yīng)的扇形圓心角的度數(shù);
(3)已知該校有1500名學(xué)生,估計該校學(xué)生對政策內(nèi)容了解程度為等的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以為直徑的半上有C,點在上,過圓心作的于點的延長線交于點,連結(jié),若.
試說明;
若的面積為面積的倍,連接交于點,求的值和的長:
在的條件下,延長與的延長線相交于點,直接寫的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,大樓AN上懸掛一條幅AB,小穎在坡面D處測得條幅頂部A的仰角為30°,沿坡面向下走到坡腳E處,然后向大樓方向繼續(xù)行走10米來到C處,測得條幅的底部B的仰角為45°,此時小穎距大樓底端N處20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:),且D、M、E、C、N、B、A在同一平面內(nèi),E、C、N在同一條直線上,求條幅的長度(結(jié)果精確到1米)(參考數(shù)據(jù):≈1.73,≈1.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點是雙曲線上的一個動點,連接并延長交雙曲線于點將線段繞點逆時針旋轉(zhuǎn)得到線段若點在雙曲線上運動,則_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com