【題目】對于三個數(shù)a,b,c,用M{a,b,c}表示這三個數(shù)的平均數(shù),用min{a,b,c}表示這三個數(shù)中最小的數(shù).例如:M{-1,2,3}=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=____________.
【答案】或
【解析】根據(jù)題中的運算規(guī)則得到M{3,2x+1,4x-1}=1+2x,然后再根據(jù)min{2,-x+3,5x}的規(guī)則分情況討論即可得.
M{3,2x+1,4x-1}==2x+1,
∵M{3,2x+1,4x-1}=min{2,-x+3,5x},
∴有如下三種情況:
①2x+1=2,x=,此時min{2,-x+3,5x}= min{2,,}=2,成立;
②2x+1=-x+3,x=,此時min{2,-x+3,5x}= min{2,,}=2,不成立;
③2x+1=5x,x=,此時min{2,-x+3,5x}= min{2,,}=,成立,
∴x=或,
故答案為:或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形ABC的三條內(nèi)角平分線為AE、BF、CG,下面的說法中正確的個數(shù)有( )
①△ABC的內(nèi)角平分線上的點到三邊距離相等
②三角形的三條內(nèi)角平分線交于一點
③三角形的內(nèi)角平分線位于三角形的內(nèi)部
④三角形的任一內(nèi)角平分線將三角形分成面積相等的兩部分.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑OD⊥弦AB于點C,連結(jié)AO并延長交⊙O于點E,連結(jié)EC.若AB=8,CD=2,則sin∠ECB為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD=3,∠CAB=30°,點P是線段AC上的動點,點Q是線段CD上的動點,則AQ+QP的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,李老師出示了如下框中的題目.
在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且ED=EC,如圖.試確定線段AE與DB的大小關(guān)系,并說明理由. |
小敏與同桌小聰討論后,進行了如下解答:
(1)特殊情況,探索結(jié)論
當點E為AB的中點時,如圖1,確定線段AE與的DB大小關(guān)系.請你直接寫出結(jié)論:
AE DB(填“>”,“<”或“=”).
圖1 圖2
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關(guān)系是:AE DB(填“>”,“<”或“=”).
理由如下:如圖2,過點E作EF∥BC,交AC于點F.
(請你完成以下解答過程)
(3)拓展結(jié)論,設(shè)計新題
在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若△ABC的邊長為1,AE=2,求CD的長(請你直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,鐵路上A、B兩點相距25km,C、D為兩村莊,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得C、D兩村到E站的距離相等,則E站應(yīng)建在距A站多少千米處?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,分別以直角三角形ABC三邊為直徑向外作三個半圓,其面積分別用S1、S2、S3表示,則不難證明S1=S2+S3 .
(1) 如圖②,分別以直角三角形ABC三邊為邊向外作三個正方形,其面積分別用S1、S2、S3表示,那么S1、S2、S3之間有什么關(guān)系?(不必證明)
(2) 如圖③,分別以直角三角形ABC三邊為邊向外作三個正三角形,其面積分別用S1、S2、S3表示,請你確定S1、S2、S3之間的關(guān)系并加以證明;
(3) 若分別以直角三角形ABC三邊為邊向外作三個正多邊形,其面積分別用S1、S2、S3表示,請你猜想S1、S2、S3之間的關(guān)系?.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知網(wǎng)格上最小的正方形的邊長為1,
(1)作△ABC關(guān)于軸的對稱圖形△A'B'C'(不寫做法),并寫出A'B'C'的坐標,想一想:關(guān)于軸對稱的兩個點之間有什么關(guān)系?
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某電腦公司有A型、B型、C型三種型號的電腦,其價格分別為A型每臺6 000元,B型每臺4 000元,C型每臺2 500元,我市東坡中學(xué)計劃將100 500元錢全部用于該電腦公司購進其中兩種不同型號的電腦共36臺,請你設(shè)計出幾種不同的購買方案供該校選擇,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com