【題目】如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由改為,已知原傳送帶長為米.

1)求新傳送帶的長度;

2)如果需要在貨物著地點的左側(cè)留出2米的通道,試判斷距離5米的貨物是否需要挪走,并說明理由.(參考數(shù)據(jù):,.)

【答案】1)新傳送帶AC的長度為8米;(2)距離B5米的貨物不需要挪走,理由見解析

【解析】

1)根據(jù)正弦的定義求出AD,根據(jù)直角三角形30度角的性質(zhì)求出AC;
2)根據(jù)正切函數(shù)的定義求出CD,求出PC的長度,比較大小得到答案.

1)在RtABD中,∠ADB=90,,

sinABD=,

,

RtACD中,∠ADC=90°,∠ACD=30°,
AC=2AD=8
答:新傳送帶AC的長度為8米;

2)距離B5米的貨物不需要挪走,
理由如下:

RtABD中,∠ADB=90,∠ABD=45°,
BD=AD=4

RtACD中,∠ADC=90,∠ACD=30°,AC=8

() ,

CB=CD-BD2.8,
PC=PB-CB2.2,
2.22,
∴距離B5米的貨物不需要挪走.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】游樂園新建的一種新型水上滑道如圖,其中線段表示距離水面(x軸)高度為5m的平臺(點Py軸上).滑道可以看作反比例函數(shù)圖象的一部分,滑道可以看作是二次函數(shù)圖象的一部分,兩滑道的連接點B為二次函數(shù)的頂點,且點B到水面的距離,點By軸的距離是5m.當小明從上而下滑到點C時,與水面的距離,與點B的水平距離.

1)求反比例函數(shù)的關(guān)系式及其自變量的取值范圍;

2)求整條滑道的水平距離;

3)若小明站在平臺上相距y的點M處,用水槍朝正前方向下“掃射”,水槍出水口N距離平臺,噴出的水流成拋物線形,設(shè)這條拋物線的二次項系數(shù)為p,若水流最終落在滑道上(包括B、D兩點),直接寫出p的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B兩所學校的學生都參加了某次體育測試,成績均為710分,且為整數(shù).亮亮分別從這兩所學校各隨機抽取一部分學生的測試成績,共200份,并繪制了如下尚不完整的統(tǒng)計圖.

1)這200份測試成績的中位數(shù)是   分,m   ;

2)補全條形統(tǒng)計圖;扇形統(tǒng)計圖中,求成績?yōu)?/span>10分所在扇形的圓心角的度數(shù).

3)亮亮算出了“1A校學生的成績被抽到”的概率是,請你估計A校成績?yōu)?/span>8分的學生大約有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC內(nèi)接于⊙O,連接CO并延長交AB于點E,交⊙O于點D,滿足∠BEC3ACD

1)如圖1,求證:ABAC;

2)如圖2,連接BD,點F為弧BD上一點,連接CF,弧CF=弧BD,過點AAGCD,垂足為點G,求證:CF+DGCG

3)如圖3,在(2)的條件下,點HAC上一點,分別連接DHOH,OHDH,過點CCPAC,交⊙O于點P,OHCP1 CF12,連接PF,求PF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=﹣x2+bx+2的圖象與x軸交于點A、B,與y軸交于點C,點A的坐標為(﹣4,0),P是拋物線上一點(點P與點A、BC不重合).

1b   ,點B的坐標是   

2)連接AC、BC,判斷∠CAB和∠CBA的數(shù)量關(guān)系,并說明理由.

3)設(shè)點M在二次函數(shù)圖象上,以M為圓心,半徑為的圓與直線AC相切,求M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,點EAD邊上一點,AEED12,連接ACBE交于點F.SAEF1,則S四邊形CDEF_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=5,AC=3,BC=4,將△ABCA逆時針方向旋轉(zhuǎn)40°得到△ADE,點B經(jīng)過的路徑為弧BD,是圖中陰影部分的面積為( 。

A. π﹣6 B. π C. π﹣3 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A. 隨機拋擲一枚均勻的硬幣,落地后反面一定朝上。

B. 1,2,3,4,5中隨機取一個數(shù),取得奇數(shù)的可能性較大。

C. 某彩票中獎率為,說明買100張彩票,有36張中獎。

D. 打開電視,中央一套正在播放新聞聯(lián)播。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點D.

(1)求證:BE=CF.

(2)當四邊形ACDE為菱形時,求BD的長.

查看答案和解析>>

同步練習冊答案