【題目】如圖,在△ABC中,AB=5,AC=3,BC=4,將△ABCA逆時(shí)針?lè)较蛐D(zhuǎn)40°得到△ADE,點(diǎn)B經(jīng)過(guò)的路徑為弧BD,是圖中陰影部分的面積為( 。

A. π﹣6 B. π C. π﹣3 D.

【答案】B

【解析】

根據(jù)AB=5,AC=3,BC=4和勾股定理的逆定理判斷三角形的形狀,根據(jù)旋轉(zhuǎn)的性質(zhì)得到AED的面積=ABC的面積,得到陰影部分的面積=扇形ADB的面積,根據(jù)扇形面積公式計(jì)算即可.

解:∵AB=5,AC=3,BC=4,

∴△ABC為直角三角形,

由題意得,AED的面積=ABC的面積,

由圖形可知,陰影部分的面積=AED的面積+扇形ADB的面積﹣ABC的面積,

∴陰影部分的面積=扇形ADB的面積=

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A是反比例函數(shù)y=的圖象在第一象限上的動(dòng)點(diǎn),連結(jié)AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為邊作等邊△ABC使點(diǎn)C落在第二象限,且邊BCx軸于點(diǎn)D,若△ACD與△ABD的面積之比為1:2,則點(diǎn)C的坐標(biāo)為( 。

A. (﹣3,2 B. (﹣5, C. (﹣6, D. (﹣3,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD為∠BAC的平分線,添下列條件后,不能證明△ABD≌△ACD的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的材料

勾股定理神秘而美妙,它的證法多種多樣,下面是教材中介紹的一種拼圖證明勾股定理的方法.

先做四個(gè)全等的直角三角形,設(shè)它們的兩條直角邊分別為a,b,斜邊為c,然后按圖1的方法將它們擺成正方形.

由圖1可以得到,

整理,得

所以

如果把圖1中的四個(gè)全等的直角三角形擺成圖2所示的正方形,

請(qǐng)你參照上述證明勾股定理的方法,完成下面的填空:

由圖2可以得到

整理,得 ,

所以 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AB=8,AC=4,DAB邊上一點(diǎn),P是優(yōu)弧的中點(diǎn),連接PA,PB,PC,PD,當(dāng)BD的長(zhǎng)度為多少時(shí),△PAD是以AD為底邊的等腰三角形?并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)是4,點(diǎn)EAB邊上一動(dòng)點(diǎn),連接CE,過(guò)點(diǎn)BBGCE于點(diǎn)G,點(diǎn)PAB邊上另一動(dòng)點(diǎn),則PD+PG的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB=120°,OP平分∠AOB,且OP=2.若點(diǎn)M,N分別在OAOB上,且PMN為等邊三角形,則滿足上述條件的PMN有(

A.1個(gè)B.2個(gè)C.3個(gè)D.3個(gè)以上

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,△ABC中,∠B、∠C平分線交于O點(diǎn),過(guò)O點(diǎn)作EFBCABACE、F.

1)猜想:EFBE、CF之間有怎樣的關(guān)系并說(shuō)明理由

2)如圖②,若△ABC中∠B的平分線BE與三角形外角∠ACD平分線CE交于E,且AEBC,AE=13,BC=24.求四邊形ABCE周長(zhǎng)和面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將長(zhǎng)方形ABCD沿著對(duì)角線BD折疊,使點(diǎn)C落在處,AD于點(diǎn)E

(1)試判斷△BDE的形狀,并說(shuō)明理由;

(2)若,求△BDE的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案