【題目】如圖,在ABCD中,點EAD邊上一點,AEED12,連接ACBE交于點F.SAEF1,則S四邊形CDEF_______.

【答案】11

【解析】

先根據(jù)平行四邊形的性質(zhì)易得,根據(jù)相似三角形的判定可得△AFE∽△CFB,再根據(jù)相似三角形的性質(zhì)得到△BFC的面積,,進而得到△AFB的面積,即可得△ABC的面積,再根據(jù)平行四邊形的性質(zhì)即可得解.

解:∵AEED12,

AEAD13

AD=BC,

AEBC13,

ADBC,

△AFE∽△CFB,

,

SBCF=9,

,

SAFB=3

SACD =SABC = SBCF+SAFB=12,

∴S四邊形CDEFSACDSAEF121=11.

故答案為:11.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級學(xué)生小麗、小強和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作.已知該水果的進價為8/千克,下面是他們在活動結(jié)束后的對話.

小麗:如果以10/千克的價格銷售,那么每天可售出300千克.

小強:如果每千克的利潤為3元,那么每天可售出250千克.

小紅:如果以13/千克的價格銷售,那么每天可獲取利潤750元.

【利潤=(銷售價-進價)銷售量】

1)請根據(jù)他們的對話填寫下表:

銷售單價x(元/kg

10

11

13

銷售量ykg




2)請你根據(jù)表格中的信息判斷每天的銷售量y(千克)與銷售單價x(元)之間存在怎樣的函數(shù)關(guān)系.并求y(千克)與x(元)(x0)的函數(shù)關(guān)系式;

3)設(shè)該超市銷售這種水果每天獲取的利潤為W元,求Wx的函數(shù)關(guān)系式.當(dāng)銷售單價為何值時,每天可獲得的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一座拋物線型拱橋,在正常水位時水面的寬為18米,拱頂離水面的距離9米,建立如圖所示的平面直角坐標系.

1)求此拋物線的解析式;

2)一艘貨船在水面上的部分的橫斷面是矩形.

①如果限定矩形的長12米,那么要使船通過拱橋,矩形的高不能超過多少米?

②若點,都在拋物線上,設(shè),當(dāng)的值最大時,求矩形的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為檢測“停課不停學(xué)”期間九年級學(xué)生的復(fù)習(xí)情況,進行了中考數(shù)學(xué)模擬測試并從中隨機抽取了部分學(xué)生的測試成績分成個小組,根據(jù)每個小組的人數(shù)繪制如圖所示的尚不完整的頻數(shù)分布直方圖.

請根據(jù)信息回答下列問題:

若成績在分的頻率為,請計算抽取的學(xué)生人數(shù)并補全頻數(shù)分布直方圖;

在此次測試中,抽取學(xué)生成績的中位數(shù)在______ 分數(shù)段中;

若該校九年級共有名學(xué)生,成績在分以上的()為優(yōu)秀,請通過計算說明,大約有多少名學(xué)生在本次測試中數(shù)學(xué)成績?yōu)閮?yōu)秀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,的頂點是底邊的中點,兩邊分別與交于點

1)如圖1 ,當(dāng)的位置變化時,是否隨之變化?證明你的結(jié)論;

2)如圖2,當(dāng),當(dāng) °時,(1)中的結(jié)論仍然成立,求出此時的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C90°,點OAC上,以OA為半徑的⊙OAB于點DBD的垂直平分線交BC于點E,交BD于點F,連接DE

1)判斷直線DE與⊙O的位置關(guān)系,并說明理由;

2)若AC3,BC4,OA1,求線段DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,點EBC邊上一動點(不與點C重合)對角線ACBD相交于點O,連接AE,交BD于點G

1)根據(jù)給出的△AEC,作出它的外接圓⊙F,并標出圓心F(不寫作法和證明,保留作圖痕跡);

2)在(1)的條件下,連接EF求證:∠AEF=∠DBC;

tGF2+AGGE,當(dāng)AB6BD6時,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,四邊形ABCD的四個頂點都在格點上,請按要求完成下列各題.

1)線段AB的長為__,BC的長為__CD的長為__,AD的長為__;

2)連接AC,通過計算ACD的形狀是__;ABC的形狀是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將含30°的直角三角板ABC(∠A30°)繞其直角頂點C順時針旋轉(zhuǎn)α角(α90°),得到RtABC,ACAB交于點D,過點DDEABCB于點E,連接BE.易知,在旋轉(zhuǎn)過程中,BDE為直角三角形.設(shè)BC1,ADxBDE的面積為S

1)當(dāng)α30°時,求x的值.

2)求Sx的函數(shù)關(guān)系式,并寫出x的取值范圍;

3)以點E為圓心,BE為半徑作⊙E,當(dāng)S時,判斷⊙EAC的位置關(guān)系,并求相應(yīng)的tanα值.

查看答案和解析>>

同步練習(xí)冊答案