【題目】如圖,AB為O的直徑,弦CFAB于點(diǎn)E,CF=4,過(guò)點(diǎn)C作O的切線交AB的延長(zhǎng)線于點(diǎn)D,D=30°,則OA的長(zhǎng)為(  )

A. 2 B. 4 C. 4 D. 4

【答案】B

【解析】

由∠D=30°,利用切線的性質(zhì)可得∠COB的度數(shù),利用等邊三角形的判定和性質(zhì)及切線的性質(zhì)可得∠BCD,易得BC=BD,由垂徑定理得CE的長(zhǎng),在直角三角形COE中,利用銳角三角函數(shù)易得OC的長(zhǎng),得BD的長(zhǎng).

解:連結(jié)CO,BC,

∵CD切⊙OC,

∴∠OCD=90°,

又∵∠D=30°,

∴∠COB=60°,

∴△OBC是等邊三角形,即BC=OC=OB,

∴∠BCD=90°﹣∠OCB=30°,

∴BC=DB,

又∵直徑AB⊥弦CF,

∴直徑AB平分弦CF,即CE=,

Rt△OCE中,sin∠COE==,

∴OC==4,

∴OA=OC=4.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課間,小明拿著老師的等腰直角三角尺玩,不小心掉到兩堆磚塊之間,如圖所示.

1)求證:ADC≌△CEB;

2)已知DE35cm,請(qǐng)你幫小明求出磚塊的厚度a的大小(每塊磚的厚度相同).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC為等邊三角形,P是直線AC上一點(diǎn),ADBPD,以AD為邊作等邊ADE(D,E在直線AC異側(cè)).

(1)如圖1,若點(diǎn)P在邊AC上,連CD,且∠BDC=150°,則= ;(直接寫結(jié)果)

(2)如圖2,若點(diǎn)PAC延長(zhǎng)線上,DEBCF求證:BF=CF;

(3)在圖2中,若∠PBC=15°,AB=,請(qǐng)直接寫出CP的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形中,的中點(diǎn),延長(zhǎng)線上的一點(diǎn),

求證;

閱讀下列材料:

如圖,把沿直線平行移動(dòng)線段的長(zhǎng)度,可以變到的位置;

如圖,以為軸把翻折,可以變到的位置;

如圖,以點(diǎn)為中心把旋轉(zhuǎn),可以變到的位置.

像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平行移動(dòng)、翻折、旋轉(zhuǎn)等方法變成的,這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.

回答下列問(wèn)題:

在圖中,可以通過(guò)平行移動(dòng)、翻折、旋轉(zhuǎn)中的哪一種方法使變到的位置,

答:________.

指出圖中,線段之間的關(guān)系.

答:________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)的圖像交于點(diǎn),,

(1)求反比例函數(shù)與一次函數(shù)的函數(shù)表達(dá)式

(2)請(qǐng)結(jié)合圖像直接寫出不等式的解集;

(3)若點(diǎn)Px軸上一點(diǎn),ABP的面積為10,求點(diǎn)P的坐標(biāo),

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】十一期間,小明一家一起去旅游,如圖是小明設(shè)計(jì)的某旅游景點(diǎn)的圖紙(網(wǎng)格是由相同的小正方形組成的,且小正方形的邊長(zhǎng)代表實(shí)際長(zhǎng)度100m,在該圖紙上可看到兩個(gè)標(biāo)志性景點(diǎn)A,B.若建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,則點(diǎn)A(﹣3,1),B(﹣3,﹣3),第三個(gè)景點(diǎn)C(1,3)的位置已破損.

(1)請(qǐng)?jiān)趫D中畫出平面直角坐標(biāo)系,并標(biāo)出景點(diǎn)C的位置;

(2)平面直角坐標(biāo)系的坐標(biāo)原點(diǎn)為點(diǎn)O,ACO是直角三角形嗎?請(qǐng)判斷并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將一塊等腰直角三角板ABC的直角頂點(diǎn)C置于直線l上,圖2是由圖1抽象出的幾何圖形,過(guò)A、B兩點(diǎn)分別作直線l的垂線,垂足分別為D、E

1ACDCBE全等嗎?說(shuō)明你的理由.

2)若AD=2,DE=3.5,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠B= 60°.

1)如圖①.若點(diǎn)E、F分別在邊AB、AD上,且BE=AF,求證:CEF是等邊三角形.

2)小明發(fā)現(xiàn),當(dāng)點(diǎn)E、F分別在邊AB、AD上,且∠CEF=60°時(shí),CEF也是等邊三角形,

并通過(guò)畫圖驗(yàn)證了猜想;小麗通過(guò)探索,認(rèn)為應(yīng)該以CE= EF為突破口,構(gòu)造兩個(gè)全等三角形:小倩受到小麗的啟發(fā),嘗試在BC上截取BM =BE,并連接ME,如圖②,很快就證明了CEF是等邊三角形.請(qǐng)你根據(jù)小倩的方法,寫出完整的證明過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O中,直徑CD弦AB于E,AMBC于M,交CD于N,連接AD.

(1)求證:AD=AN;

(2)若AB=8,ON=1,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案