【題目】已知二次函數(shù)yx23x+4

1)配方成yaxh2+k的形式;

2)求出它的圖象的開口方向?qū)ΨQ軸頂點(diǎn)坐標(biāo);

3)求當(dāng)y0時(shí)x的取值范圍.

【答案】1yx32;(2)函數(shù)的開口向上,對稱軸是直線x3,頂點(diǎn)坐標(biāo)為(3,﹣);(32x4

【解析】

(1)根據(jù)題目中的函數(shù)解析式,利用配方法可以將題目中的函數(shù)解析式化為yaxk2+h的形式,

(2)根據(jù)頂點(diǎn)式寫出它的開口方向、對稱軸及頂點(diǎn)坐標(biāo);

(3)求得拋物線與x的交點(diǎn)坐標(biāo),根據(jù)二次函數(shù)的性質(zhì)寫出當(dāng)y0時(shí),x的取值范圍.

解:(1)二次函數(shù)yx23x+4x32,;

(2)∵yx32a0,

故該函數(shù)的開口向上,對稱軸是直線x3,頂點(diǎn)坐標(biāo)為(3,﹣);

(3)當(dāng)y0時(shí),0x23x+4,得x2x4,

y0時(shí),x的取值范圍是2x4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,它與x軸的兩個(gè)交點(diǎn)分別為(﹣10),(3,0).對于下列命題:①b2a=0②abc0;③a2b+4c0④8a+c0.其中正確的有(

A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,有一塊含有30°的直角三角形的直角邊的長恰與另一塊等腰直角三角形的斜邊的長相等.把該套三角板放置在平面直角坐標(biāo)系中,且

1)若某開口向下的拋物線的頂點(diǎn)恰好為點(diǎn),請寫出一個(gè)滿足條件的拋物線的解析式.

2)若把含30°的直角三角形繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)后,斜邊恰好與軸重疊,點(diǎn)落在點(diǎn),試求圖中陰影部分的面積(結(jié)果保留

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為推進(jìn)揚(yáng)州市五個(gè)一百工程活動(dòng),小明、小亮、小麗3人分別從A、B兩種不同的名著中任意選擇一種閱讀

1)小明選擇A種名著閱讀的概率是   ;

2)求小明、小亮、小麗3人選擇同一種名著閱讀的概率(請用畫樹狀圖的方法給出分析過程,并求出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】飛機(jī)著陸后滑行的距離y(單位:m)關(guān)于滑行時(shí)間以(單位:)的函數(shù)解析式是y6tt2.在飛機(jī)著陸滑行中,滑行最后的150m所用的時(shí)間是( 。s

A.10B.20C.30D.1030

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+c的對稱軸為x=﹣1,且過點(diǎn)(,0),有下列結(jié)論:①abc0; a2b+4c0;③25a10b+4c0;④3b+2c0;其中所有正確的結(jié)論是( 。

A.①③B.①③④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=4,EAB上一點(diǎn),連接DE,過點(diǎn)AAFDE,垂足為F.⊙O經(jīng)過點(diǎn)CD、F,與AD相交于點(diǎn)G,且AB與⊙O相切,則AE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)本課堂的實(shí)踐中,王老師經(jīng)常讓學(xué)生以問題為中心進(jìn)行自主、合作、探究學(xué)習(xí).

(課堂提問)王老師在課堂中提出這樣的問題:如圖1,在RtABC中,∠ACB=90°,∠BAC=30°,那么BCAB有怎樣的數(shù)量關(guān)系?

(互動(dòng)生成)經(jīng)小組合作交流后,各小組派代表發(fā)言.

1)小華代表第3小組發(fā)言:AB=2BC. 請你補(bǔ)全小華的證明過程.

證明:把ABC沿著AC翻折,得到ADC.

∴∠ACD=ACB=90°,

∴∠BCD=ACD+ACB=90°+90°=180°,

即:點(diǎn)BC、D共線.(請?jiān)谙旅嫜a(bǔ)全小華的證明過程)

2)受到第3小組翻折的啟發(fā),小明代表第2小組發(fā)言:如圖2,在ABC中,如果把條件ACB=90°”改為ACB=135°”,保持BAC=30°”不變,若BC=1,求AB的長.

(思維拓展)如圖3,在四邊形ABCD中,∠BCD=45°,∠BAD=90°,∠ADB=CDB=60°,且AC=3,則ABD的周長為 .

(能力提升)如圖4,點(diǎn)DABC內(nèi)一點(diǎn),AD=AC,∠BAD=CAD=20°,∠ADB+ACB=210°,則AD、DB、BC三者之間的相等關(guān)系是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點(diǎn)E,F分別在ABAD上,若CE5,且∠ECF45°,則CF的長為_____

查看答案和解析>>

同步練習(xí)冊答案