【題目】為了慶!拔逅摹鼻嗄旯(jié),某校舉行了書法比賽,賽后隨機(jī)抽查部分參賽同學(xué)的成績(jī),并制作成圖表如下:

分?jǐn)?shù)段

頻數(shù)

頻率

30

0.15

0.45

60

20

0.1

請(qǐng)根據(jù)以上圖表提供的信息,解答下列問題:

1)這次隨機(jī)抽査了_______名學(xué)生;

2)請(qǐng)?jiān)趫D中補(bǔ)全頻數(shù)分布直方圖;

3)若繪制扇形統(tǒng)計(jì)圖,分?jǐn)?shù)段所對(duì)應(yīng)扇形的圓心角的度數(shù)是________;

4)全校共有600名學(xué)生參加比賽,估計(jì)該校成績(jī)范圍內(nèi)的學(xué)生有多少人?

【答案】(1)200;(2)詳見解析;(3);(4)240.

【解析】

1)根據(jù)60≤x70的頻數(shù)及其頻率求得總?cè)藬?shù);
2)根據(jù)(1)的結(jié)果,求得的值,可以補(bǔ)全直方圖;
3)用360°乘以樣本中分?jǐn)?shù)段60≤x70的頻率即可得;
4)總?cè)藬?shù)乘以樣本中成績(jī)80≤x100范圍內(nèi)的學(xué)生人數(shù)所占比例.

解:(1)本次調(diào)查的總?cè)藬?shù)為30÷0.15200人,

,

2)補(bǔ)全頻數(shù)分布直方圖如下:

3)若繪制扇形統(tǒng)計(jì)圖,分?jǐn)?shù)段60≤x70所對(duì)應(yīng)扇形的圓心角的度數(shù)是360°×0.1554°,
故答案為:54°

(4),

答:估計(jì)該校成績(jī)80≤x100范圍內(nèi)的學(xué)生有240人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)得到△EBD,點(diǎn)E、點(diǎn)D分別與點(diǎn)A、點(diǎn)C對(duì)應(yīng),且點(diǎn)D在邊AC上,邊DE交邊AB于點(diǎn)F,△BDC∽△ABC.已知,AC5,那么△DBF的面積等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB為直角,AB=10,°,半徑為1的動(dòng)圓Q的圓心從點(diǎn)C出發(fā),沿著CB方向以1個(gè)單位長(zhǎng)度/秒的速度勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿著BA方向也以1個(gè)單位長(zhǎng)度/秒的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t≤5)以P為圓心,PB長(zhǎng)為半徑的⊙PAB、BC的另一個(gè)交點(diǎn)分別為ED,連結(jié)ED、EQ

(1)判斷并證明EDBC的位置關(guān)系,并求當(dāng)點(diǎn)Q與點(diǎn)D重合時(shí)t的值;

(2)當(dāng)⊙PAC相交時(shí),設(shè)CQPAC 截得的弦長(zhǎng)為,求關(guān)于的函數(shù); 并求當(dāng)⊙Q過點(diǎn)B時(shí)⊙PAC截得的弦長(zhǎng);

(3)若⊙P與⊙Q相交,寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,點(diǎn)EAD邊上,點(diǎn)FAD的延長(zhǎng)線上,且BE=CF.

(1)求證:四邊形EBCF是平行四邊形.

(2)若BEC=90°,ABE=30°,AB=,求ED的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),對(duì)稱軸與軸交于點(diǎn)(30),且

1)求拋物線的表達(dá)式及頂點(diǎn)坐標(biāo);

2)將拋物線平移,得到的新拋物線的頂點(diǎn)為(0,﹣1),拋物線的對(duì)稱軸與兩條拋物線圍成的封閉圖形為.直線經(jīng)過點(diǎn).若直線與圖形有公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D是邊AC上一點(diǎn),聯(lián)結(jié)BD,給出下列條件:∠ABD=∠ACB;②AB2=ADAC;③ADBC=ABBD;④ABBC=ACBD.其中單獨(dú)能夠判定△ABD∽△ACB的個(gè)數(shù)是( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,AB = 4,BC = 5,點(diǎn)P在邊AC上,且,聯(lián)結(jié)BP,以BP為一邊作BPQ(點(diǎn)B、P、Q按逆時(shí)針排列),點(diǎn)GBPQ的重心,聯(lián)結(jié)BG,∠PBG =BCA,∠QBG =BAC,聯(lián)結(jié)CQ并延長(zhǎng),交邊AB于點(diǎn)M.設(shè)PC = x,

1)求的值;

2)求y關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三張黑桃撲克牌,背面完全相同將三張撲克牌背面朝上,洗勻后放在桌面上甲,乙兩人進(jìn)行摸牌游戲,甲先從中隨機(jī)抽取一張,記下數(shù)字再放回洗勻,乙再從中隨機(jī)抽取一張.

1)甲抽到黑桃,這一事件是   事件(填不可能,隨機(jī),必然);

2)利用樹狀圖或列表的方法,求甲乙兩人抽到同一張撲克牌的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,點(diǎn)E在邊AD上,點(diǎn)F在邊BC上,且AE=CF,作EGFH,分別與對(duì)角線BD交于點(diǎn)GH,連接EHFG

1)求證:△BFH≌△DEG;

2)連接DF,若BF=DF,則四邊形EGFH是什么特殊四邊形?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案