【題目】如圖,在正方形中,是等邊三角形,、的延長(zhǎng)線分別交于點(diǎn)、,連接、,相交于點(diǎn),給出下列結(jié)論:①;②;③;④.其中正確的個(gè)數(shù)是(

A. 1B. 2C. 3D. 4

【答案】C

【解析】

由正方形的性質(zhì)及相似三角形的判定與性質(zhì),即可得到結(jié)論.

△BPC是等邊三角形,

BP=PC=BC,PBC=PCB=∠BPC=60°

在正方形ABCD中,∵AB=BC=CD,A=∠ADC=∠BCD=90°,

∴∠ABE=∠DCF=30°,

BE=2AE,故正確;

PC=CD,PCD=30°,

∴∠PDC=75°,

∠FDP=15°,

∵∠DBA=45°,

∠PBD=15°,

∠FDP=∠PBD,

∵∠DFP=∠BPC=60°,

,正確;

∠FDP=PBD=15°,∠ADB=45°

∴∠PDB=30°,而∠DFP=60°

∴∠PFD≠∠PDB

不會(huì)相似,故錯(cuò)誤;

∠PDH=∠PCD=30°,∠DPH=∠DPC,

正確,

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】奇思參加我市電視臺(tái)組織的牡丹杯智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān),第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題奇思都不會(huì),不過(guò)奇思還有兩個(gè)求助可以使用(使用求助一次可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).

1)如果奇思兩次求助都在第一道單選題中使用,求他通關(guān)的概率;

2)如果奇思每道單選題各使用一次求助",請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法求他順利通關(guān)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016·寧夏中考)如圖,已知△ABC,以AB為直徑的⊙O分別交ACD,BCE,連接ED,若EDEC.

(1)求證:ABAC;

(2)AB4BC2 ,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在∠ABC中,∠ABC90°,tanBAC

1)如圖1,分別過(guò)A、C兩點(diǎn)作經(jīng)過(guò)點(diǎn)B的直線的垂線,垂足分別為M、N,若點(diǎn)B恰好是線段MN的中點(diǎn),求tanBAM的值;

2)如圖2P是邊BC延長(zhǎng)線上一點(diǎn),∠APB=∠BAC,求tanPAC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,∠A<∠B,沿ABC的中線CMCMA折疊,使點(diǎn)A落在點(diǎn)D處,若CD恰好與MB垂直,則tanA的值為__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,ABAC18,BC12,正方形DEFG的頂點(diǎn)E,FABC內(nèi),頂點(diǎn)DG分別在AB,AC上,ADAG,DG6,則點(diǎn)FBC的距離為( )

A.1B.2C.126D.66

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB于點(diǎn)P,AP=2,BP=6,APC=30°,則CD的長(zhǎng)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(﹣3,0),對(duì)稱(chēng)軸為x=﹣1.給出四個(gè)結(jié)論:①b24ac;②2a+b0;③ab+c0;④5ab.其中正確的有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BCx軸平行,A,B兩點(diǎn)的縱坐標(biāo)分別為4,2,反比例函數(shù)y(x0)的圖象經(jīng)過(guò)AB兩點(diǎn),若菱形ABCD的面積為2,則k的值為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案