【題目】奇思參加我市電視臺組織的“牡丹杯”智力競答節(jié)目,答對最后兩道單選題就順利通關(guān),第一道單選題有3個選項,第二道單選題有4個選項,這兩道題奇思都不會,不過奇思還有兩個“求助”可以使用(使用“求助”一次可以讓主持人去掉其中一題的一個錯誤選項).
(1)如果奇思兩次“求助”都在第一道單選題中使用,求他通關(guān)的概率;
(2)如果奇思每道單選題各使用一次“求助",請用列表法或畫樹狀圖的方法求他順利通關(guān)的概率.
【答案】(1);(2)
【解析】
(1)由第一道題單選題有3個選項,如果奇思兩次“求助”都在第一道單選題中使用,故可知第一道單選題肯定能對,所以第二道單選題對的概率即為他通關(guān)的概率;
(2)根據(jù)題意,畫出樹狀圖,分析出等可能的結(jié)果,再利用概率公式求概率即可.
解:(1)∵奇思兩次“求助”都在第一道單選題中使用,
∴第一道單選題肯定能對.
又∵第二道單選題對的概率為,
∴他通關(guān)的概率為;
(2)奇思每道單選題各使用一次“求助”,分別用、表示第一道單選題剩下的2個選項,、、表示第二道單選題剩下的3個選項,則所畫樹狀圖如下所示:
共有6種等可能的結(jié)果,奇思順利通關(guān)的結(jié)果只有1種,
∴奇思順利通關(guān)的概率為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=kx+2k+4與拋物線y=x 2
(1)求證:直線與拋物線有兩個不同的交點;
(2)設(shè)直線與拋物線分別交于A, B兩點.
①當(dāng)k=-時,在直線AB下方的拋物線上求點P,使△ABP的面積等于5;
②在拋物線上是否存在定點D使∠ADB=90°,若存在,求點D到直線AB的最大距離. 若不存在,請你說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,畫一條平行于BC的直線,使其將△ABC分成兩部分,且所分三角形與梯形面積比為1:3;
(2)如圖②,△ABC中AB=4,AC=3,BC=6,D是△ABC中AC邊上的點,AD=2,過點D畫一條直線l將△ABC分成兩部分,l與△ABC另一邊的交點為點P,使其所分的一個三角形與△ABC相似,并求出DP的長;
(3)如圖③所示,在等腰△ABC中,CA=CB=10,AB=12.在△ABC中放入正方形DEMN和正方形EFPH,使得DE.EF在邊AB上,點P.N分別在邊CB.CA上,若較大正方形的邊長為a,請用含a的代數(shù)式表示較小正方形的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知線段AB和直線l,用直尺和圓規(guī)在l上作出所有的點P,使得∠APB=30°,如圖②,小明的作圖方法如下:
第一步:分別以點A,B為圓心,AB長為半徑作弧,兩弧在AB上方交于點O;
第二步:連接OA,OB;
第三步:以O為圓心,OA長為半徑作⊙O,交l于P1,P2;
所以圖中P1,P2即為所求的點.
(1)在圖②中,連接P1A,P1B,證明∠AP1B=30°;
(2)如圖③,用直尺和圓規(guī)在矩形ABCD內(nèi)作出所有的點P,使得∠BPC=45°,(不寫做法,保留作圖痕跡).
(3)已知矩形ABCD,若BC=2.AB=m,P為AD邊上的點,若滿足∠BPC=45°的點P恰有兩個,則m的取值范圍為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A,B,C,D是⊙O上的四個點.
(1)如圖1,若∠ADC=∠BCD=90°,AD=CD,求證:AC⊥BD;
(2)如圖2,若AC⊥BD.垂足為E,AB=4,DC=6,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在學(xué)習(xí)《圓》這一章時,老師給同學(xué)們布置了一道尺規(guī)作圖題:
尺規(guī)作圖:如圖,過圓外一點作圓的切線.
已知:P為⊙O外一點.
求作:經(jīng)過點P的⊙O的切線.
小敏的作法如下:如圖,
(1)連接OP,作線段OP的垂直平分線MN交OP于點C.
(2)以點C為圓心,CO的長為半徑作圓,交⊙O于A,B兩點.
(3)作直線PA,PB.
所以直線PA,PB就是所求作的切線.
老師認為小敏的作法正確.
請回答:
(1)連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是_________.
(2)如果⊙O的半徑等于3,點P到切點的距離為4,求點A與點B之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC為等邊三角形, M為三角形外任意一點,把△ABM繞著點A按逆時針方向旋轉(zhuǎn)60°到△CAN的位置.
(1)如圖①,若∠BMC=120°,BM=2,MC=3.求∠AMB的度數(shù)和求AM的長.
(2)如圖②,若∠BMC = n°,試寫出AM、BM、CM之間的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,點A,B的坐標分別為A(4,0),B(4,3),動點N,P分別從點B,A同時出發(fā),點N以1單位/秒的速度向終點C運動,點P以5/4單位/秒的速度向終點C運動,連結(jié)NP,設(shè)運動時間為t秒(0<t<4)
(1)直接寫出OA,AB,AC的長度;
(2)求證:△CPN∽△CAB;
(3)在兩點的運動過程中,若點M同時以1單位/秒的速度從點O向終點A運動,求△MPN的面積S與運動的時間t的函數(shù)關(guān)系式(三角形的面積不能為0),并直接寫出當(dāng)S=時,運動時間t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,是等邊三角形,、的延長線分別交于點、,連接、,與相交于點,給出下列結(jié)論:①;②;③;④.其中正確的個數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com