【題目】如圖,在ABC中,∠ABC2C,依據(jù)尺規(guī)作圖的痕跡,解答下面的問題:

1)求證:ABE≌△AFE;

2)若AB3.3,BE1.8,求AC的長.

【答案】1)見解析;(2AC5.1

【解析】

1)根據(jù)全等三角形的判定定理進行證明;

2)利用(1)中全等三角形的對應(yīng)邊、對應(yīng)角相等推知:∠C=∠FEC,結(jié)合等角對等邊得到BCFE,則FCBE,結(jié)合圖形求得答案.

1)證明:由尺規(guī)作圖的痕跡可知,ABAF,

AE是∠BAC的平分線,

∴∠BAE=∠FAE

AEAE,

∴△ABE≌△AFE

2)由(1)中的結(jié)論可知,

ABAF,BEFE,∠ABE=∠AFE

又∠ABC2C,

∴∠AFE2C,

∵∠AFE=∠C+FEC

∴∠C=∠FEC,

FCFE,

FCBE,

ACAF+FCAB+BE3.3+1.85.1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖甲,拋物線yax2+bx1經(jīng)過A(10),B(2,0)兩點,交y軸于點C

(1)求拋物線的表達式和直線BC的表達式.

(2)如圖乙,點P為在第四象限內(nèi)拋物線上的一個動點,過點Px軸的垂線PE交直線BC于點D

①在點P運動過程中,四邊形ACPB的面積是否存在最大值?若存在,求出這個最大值;若不存在,說明理由.

②是否存在點P使得以點OC,D為頂點的三角形是等腰三角形?若存在,求出滿足條件的點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】連接多邊形任意兩個不相鄰頂點的線段稱為多邊形的對角線.

1)四、五、六、n邊形對角線條數(shù)分別為 、 、 、

2)多邊形可以有12條對角線嗎?如果可以,求多邊形的邊數(shù);如果不可以,請說明理由.

3)若一個n邊形的內(nèi)角和為1800°,求它對角線的條數(shù).

4)已知k-1邊形的對角線條數(shù)是,求k+1邊形的對角線條數(shù)(k>4).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校組織九年級學生參加漢字聽寫大賽,并隨機抽取部分學生成績作為樣本進行分析,繪制成如下的統(tǒng)計表:

成績x/

頻數(shù)

頻率

1

x<60

2

0.04

2

60≤x<70

6

0.12

3

70≤x<80

9

b

4

80≤x<90

a

0.36

5

90≤x≤100

15

0.30

請根據(jù)所給信息,解答下列問題:

(1)a______,b______;

(2)請補全頻數(shù)分布直方圖;

(3)樣本中,部分學生成績的中位數(shù)落在第_______;

(4)已知該年級有400名學生參加這次比賽,若成績在90分以上(含90分)的為優(yōu),估計該年級成績?yōu)閮?yōu)的有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,淇淇一家駕車從A地出發(fā),沿著北偏東60°的方向行駛,到達B地后沿著南偏東50°的方向行駛來到C地,C地恰好位于A地正東方向上,則( 。

①B地在C地的北偏西50°方向上;

②A地在B地的北偏西30°方向上;

③cos∠BAC=;

④∠ACB=50°.其中錯誤的是( 。

A. ①② B. ②④ C. ①③ D. ③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線y1=ax2+bx+ca≠0)圖象的一部分,拋物線的頂點坐標A1,3),與x軸的一個交點B40),直線y2=mx+nm≠0)與拋物線交于A,B兩點,下列結(jié)論:

①2a+b=0;②abc0;方程ax2+bx+c=3有兩個相等的實數(shù)根;拋物線與x軸的另一個交點是(﹣1,0);1x4時,有y2y1,

其中正確的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著北京申辦冬奧會的成功,愈來愈多的同學開始關(guān)注我國的冰雪體育項目. 小健從新聞中了解到:在2018年平昌冬奧會的短道速滑男子500米決賽中,中國選手武大靖以39秒584的成績打破世界紀錄,收獲中國男子短道速滑隊在冬奧會上的首枚金牌. 同年11月12日,武大靖又以39秒505的成績再破世界紀錄. 于是小健對同學們說:“2022年北京冬奧會上武大靖再獲金牌的可能性大小是.”你認為小健的說法_________(填“合理”或“不合理”),理由是__________________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O內(nèi)切于RtABC,點P、點Q分別在直角邊BC、斜邊AB上,PQAB,且PQ與⊙O相切,若AC2PQ,則tanB的值為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:求31+32+33+34+35+36的值

解:設(shè)S=31+32+33+34+35+36

3S=32+33+34+35+36+37

②﹣①得,3S﹣S=(32+33+34+35+36+37)﹣(31+32+33+34+35+36)=37﹣3

∴2S=37﹣3,即S=,∴31+32+33+34+35+36=

以上方法我們成為錯位相減法,請利用上述材料,解決下列問題:

(一)棋盤擺米

這是一個很著名的故事:阿基米德與國王下棋,國王輸了,國王問阿基米德要什么獎賞?阿基米德對國王說:我只要在棋盤上第一格放一粒米,第二格放二粒,第三格放四粒,第四格放八粒按這個方法放滿整個棋盤就行國王以為要不了多少糧食,就隨口答應(yīng)了,結(jié)果國王輸了

(1)國際象棋共有64個格子,則在第64格中應(yīng)放   粒米(用冪表示)

(2)設(shè)國王輸給阿基米德的米粒數(shù)為S,求S

(二)拓廣應(yīng)用:

1.計算:(仿照材料寫出求解過程)

2.計算:=   (直接寫出結(jié)果)

查看答案和解析>>

同步練習冊答案