【題目】如圖,在△ABC中,∠ABC=2∠C,依據(jù)尺規(guī)作圖的痕跡,解答下面的問題:
(1)求證:△ABE≌△AFE;
(2)若AB=3.3,BE=1.8,求AC的長.
【答案】(1)見解析;(2)AC=5.1.
【解析】
(1)根據(jù)全等三角形的判定定理進行證明;
(2)利用(1)中全等三角形的對應(yīng)邊、對應(yīng)角相等推知:∠C=∠FEC,結(jié)合等角對等邊得到BC=FE,則FC=BE,結(jié)合圖形求得答案.
(1)證明:由尺規(guī)作圖的痕跡可知,AB=AF,
且AE是∠BAC的平分線,
∴∠BAE=∠FAE,
又AE=AE,
∴△ABE≌△AFE.
(2)由(1)中的結(jié)論可知,
AB=AF,BE=FE,∠ABE=∠AFE,
又∠ABC=2∠C,
∴∠AFE=2∠C,
∵∠AFE=∠C+∠FEC,
∴∠C=∠FEC,
∴FC=FE,
∴FC=BE,
故AC=AF+FC=AB+BE=3.3+1.8=5.1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖甲,拋物線y=ax2+bx﹣1經(jīng)過A(﹣1,0),B(2,0)兩點,交y軸于點C.
(1)求拋物線的表達式和直線BC的表達式.
(2)如圖乙,點P為在第四象限內(nèi)拋物線上的一個動點,過點P作x軸的垂線PE交直線BC于點D.
①在點P運動過程中,四邊形ACPB的面積是否存在最大值?若存在,求出這個最大值;若不存在,說明理由.
②是否存在點P使得以點O,C,D為頂點的三角形是等腰三角形?若存在,求出滿足條件的點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】連接多邊形任意兩個不相鄰頂點的線段稱為多邊形的對角線.
(1)四、五、六、n邊形對角線條數(shù)分別為 、 、 、 .
(2)多邊形可以有12條對角線嗎?如果可以,求多邊形的邊數(shù);如果不可以,請說明理由.
(3)若一個n邊形的內(nèi)角和為1800°,求它對角線的條數(shù).
(4)已知k-1邊形的對角線條數(shù)是,求k+1邊形的對角線條數(shù)(k>4).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校組織九年級學生參加漢字聽寫大賽,并隨機抽取部分學生成績作為樣本進行分析,繪制成如下的統(tǒng)計表:
成績x/分 | 頻數(shù) | 頻率 | |
第1段 | x<60 | 2 | 0.04 |
第2段 | 60≤x<70 | 6 | 0.12 |
第3段 | 70≤x<80 | 9 | b |
第4段 | 80≤x<90 | a | 0.36 |
第5段 | 90≤x≤100 | 15 | 0.30 |
請根據(jù)所給信息,解答下列問題:
(1)a=______,b=______;
(2)請補全頻數(shù)分布直方圖;
(3)樣本中,部分學生成績的中位數(shù)落在第_______段;
(4)已知該年級有400名學生參加這次比賽,若成績在90分以上(含90分)的為優(yōu),估計該年級成績?yōu)閮?yōu)的有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,淇淇一家駕車從A地出發(fā),沿著北偏東60°的方向行駛,到達B地后沿著南偏東50°的方向行駛來到C地,C地恰好位于A地正東方向上,則( 。
①B地在C地的北偏西50°方向上;
②A地在B地的北偏西30°方向上;
③cos∠BAC=;
④∠ACB=50°.其中錯誤的是( 。
A. ①② B. ②④ C. ①③ D. ③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論:
①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(﹣1,0);⑤當1<x<4時,有y2<y1,
其中正確的是( )
A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著北京申辦冬奧會的成功,愈來愈多的同學開始關(guān)注我國的冰雪體育項目. 小健從新聞中了解到:在2018年平昌冬奧會的短道速滑男子500米決賽中,中國選手武大靖以39秒584的成績打破世界紀錄,收獲中國男子短道速滑隊在冬奧會上的首枚金牌. 同年11月12日,武大靖又以39秒505的成績再破世界紀錄. 于是小健對同學們說:“2022年北京冬奧會上武大靖再獲金牌的可能性大小是.”你認為小健的說法_________(填“合理”或“不合理”),理由是__________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O內(nèi)切于Rt△ABC,點P、點Q分別在直角邊BC、斜邊AB上,PQ⊥AB,且PQ與⊙O相切,若AC=2PQ,則tan∠B的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:求31+32+33+34+35+36的值
解:設(shè)S=31+32+33+34+35+36①
則3S=32+33+34+35+36+37②
用②﹣①得,3S﹣S=(32+33+34+35+36+37)﹣(31+32+33+34+35+36)=37﹣3
∴2S=37﹣3,即S=,∴31+32+33+34+35+36=
以上方法我們成為“錯位相減法”,請利用上述材料,解決下列問題:
(一)棋盤擺米
這是一個很著名的故事:阿基米德與國王下棋,國王輸了,國王問阿基米德要什么獎賞?阿基米德對國王說:“我只要在棋盤上第一格放一粒米,第二格放二粒,第三格放四粒,第四格放八粒…按這個方法放滿整個棋盤就行”國王以為要不了多少糧食,就隨口答應(yīng)了,結(jié)果國王輸了
(1)國際象棋共有64個格子,則在第64格中應(yīng)放 粒米(用冪表示)
(2)設(shè)國王輸給阿基米德的米粒數(shù)為S,求S
(二)拓廣應(yīng)用:
1.計算:(仿照材料寫出求解過程)
2.計算:= (直接寫出結(jié)果)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com