精英家教網 > 初中數學 > 題目詳情

【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長線上的點,且DE=BF,連接AE、AF、EF.

(1)求證:ADE≌△ABF;

(2)填空:ABF可以由ADE繞旋轉中心    點,按順時針方向旋轉    度得到;

(3)若BC=8,DE=6,求AEF的面積.

【答案】解:(1)證明:四邊形ABCD是正方形,AD=AB,D=ABC=90°。

點F是CB延長線上的點,∴∠ABF=90°。

ADE和ABF中,,

∴△ADE≌△ABF(SAS)。

(2)A;90。

(3)BC=8,AD=8。

在RtADE中,DE=6,AD=8,。

∵△ABF可以由ADE繞旋轉中心 A點,按順時針方向旋轉90 度得到,

AE=AF,EAF=90°。

∴△AEF的面積=AE2=×100=50(平方單位)。

【解析】

試題(1)根據正方形的性質得AD=AB,D=ABC=90°,然后利用“SAS”易證得ADE≌△ABF。

(2)∵△ADE≌△ABF,∴∠BAF=DAE。

DAE+EBF=90°,∴∠BAF+EBF=90°,即FAE=90°。

∴△ABF可以由ADE繞旋轉中心 A點,按順時針方向旋轉90 度得到。

(3)先利用勾股定理可計算出AE=10,在根據ABF可以由ADE繞旋轉中心 A點,按順時針方向旋轉90 度得到AE=AF,EAF=90°,然后根據直角三角形的面積公式計算即可。 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠CRt∠,∠ABC=60°,DBC邊上的點,CD1,將ACD沿直線AD翻折,點C恰好落在直線AB的邊上的E處,若P是直線AD上的動點,則PEB的周長最小值是____________ .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】先化簡,再求值:

(1)(9x3y12xy33xy2)÷(3xy)(2yx)(2yx),其中x1,y=-2;

(2)(mn)(mn)(mn)22m2,其中m、n滿足方程組

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC 中,AB=AC,C=70°,AB′C′ABC 關于直線 EF對稱,∠CAF=10°,連接 BB′,則∠ABB′的度數是(

A. 30° B. 35° C. 40° D. 45°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一快遞倉庫里堆放著若干個相同的正方體快遞件,管理員從正面看和從左面看這堆快遞如圖所示,則這正方體快遞件最多有_____.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,二次函數y=﹣x2+bx+c的圖象經過A(2,0),B(0,﹣6)兩點

(1)求這個二次函數的解析式;

(2)設該二次函數的對稱軸與x軸交于點C,連接BA,BC,求△ABC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在數學興趣小組的活動中,小明進行數學探究活動,將邊長為2的正方形ABCD與邊長為2的正方形AEFG按圖①位置放置,ADAE在同一直線上,ABAG在同一直線上.

⑴小明發(fā)現(xiàn)DGBE,請你幫他說明理由.

⑵如圖②,小明將正方形ABCD繞點A逆時針旋轉,當點B恰好落在線段DG上時,請你幫他求出此時BE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某初級中學數學興趣小組為了了解本校學生的年齡情況,隨機調查了該校部分學生的年齡,整理數據并繪制如下不完整的統(tǒng)計圖.

依據以上信息解答以下問題:

(1)求樣本容量;

(2)直接寫出樣本容量的平均數,眾數和中位數;

(3)若該校一共有1800名學生,估計該校年齡在15歲及以上的學生人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC看,∠BAC=90°,AC=12,AB=10DAC上一個動點,以AD為直徑的⊙O交BDE,則線段CE的最小值是(

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

同步練習冊答案