【題目】在中,分別是上的點,,交于點,若,則四邊形的面積為________。
【答案】
【解析】
連接DE,根據(jù)相似三角形的判定定理得出△DCE∽△ABC,進(jìn)而判斷出AB∥CD、△DEF∽△ABF,再根據(jù)相似三角形的性質(zhì)即可進(jìn)行解答.
連接DE,
∵AE=2CE,BD=2CD,
∴=,且夾角∠C為公共角,
∴△DCE∽△ABC,
∴∠CED=∠CAB,
∴AB∥DE,
∴△CDE∽△CBA,
∴== ,
∴= ,
∵S△ABC=3,
∴S△CDE=3×=,
且∠EDA=∠BAD,∠BED=∠ABE,
∴△DEF∽△ABF,
∴==,
∴設(shè)S△DEF=x,則S△AEF=S△BDF=3x,S△ABF=9x,
∴x+3x+3x+9x=3,
解得:x=,
∴S△DEF=,
∴S△DEF+S△CDE=+=.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),P為△ABC所在平面上一點,且∠APB=∠BPC=∠CPA=120°,則點P叫做△ABC的費馬點.
(1)如果點P為銳角△ABC的費馬點,且∠ABC=60°.
①求證:△ABP∽△BCP;
②若PA=3,PC=4,則PB= .
(2)已知銳角△ABC,分別以AB、AC為邊向外作正△ABE和正△ACD,CE和BD 相交于P點.如圖(2)
①求∠CPD的度數(shù);
②求證:P點為△ABC的費馬點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ OAB 是腰長為 1 的等腰直角三角形, OAB 90°,延長OA 至 B1 ,使 AB1 OA ,以OB1 為底,在△ OAB 外側(cè)作等腰直角三角形OA1B1 ,再延長OA1 至 B2 , 使 A1B2 OA1 ,以OB2 為底,在△ OA1B1 外側(cè)作等腰直角三角形OA2 B2 ,……,按此規(guī)律作等腰直角三角形OAn Bn ( n 1 , n 為正整數(shù)),回答下列問題:
(1) A3B3 的長是_____________;(2)△ OA2020 B2020 的面積是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點F,H是BC邊的中點,連結(jié)DH與BE相交于點G.
(1)求證:BF=AC;
(2)求證:CE=BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點在的邊上,交于,交于,若添加條件________,則四邊形是矩形;若添加條件________,則四邊形是菱形;若添加條件________,則四邊形是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場某種商品平均每天可銷售30件,每件盈利50元。為了盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施。經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件。設(shè)每件商品降價元。據(jù)此規(guī)律,請回答:
(1)商場日銷售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。
(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達(dá)到2100元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將繞點順時針旋轉(zhuǎn)到的位置,點、分別落在點、處,點在軸上,再將繞點順時針旋轉(zhuǎn)到的位置,點在軸上,將繞點順時針旋轉(zhuǎn)到的位置,點在軸上,依次進(jìn)行下去….若點,,則點的坐標(biāo)為( )
A. B. C. D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小華和小峰是兩名自行車愛好者,小華的騎行速度比小峰快兩人準(zhǔn)備在周長為250米的賽道上進(jìn)行一場比賽若小華在小峰出發(fā)15秒之后再出發(fā),圖中、分別表示兩人騎行路程與時間的關(guān)系.
小峰的速度為______米秒,他出發(fā)______米后,小華才出發(fā);
小華為了能和小峰同時到達(dá)終點,設(shè)計了兩個方案,方案一:加快騎行速度;方案二:比預(yù)定時間提前出發(fā).
圖______填“A“”或“B“代表方案一;
若采用方案二,小華必須在小峰出發(fā)多久后開始騎行?求出此時小華騎行的路程與時間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,DE分別是邊AB、AC上的點,且AD=CE,則∠ADC+∠BEA=( 。
A.180°B.170°C.160°D.150°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com