【題目】如圖,在平行四邊形ABCD中,點(diǎn)M為邊AD的中點(diǎn),過(guò)點(diǎn)CAB的垂線交AB于點(diǎn)E,連接ME,已知AM2AE4,∠BCE30°.

1)求平行四邊形ABCD的面積S;

2)求證:∠EMC2AEM

【答案】1 ;(2)證明見(jiàn)解析.

【解析】

(1)AM2AE4,利用平行四邊形的性質(zhì)可求出BC=AD=8,利用直角三角形的性質(zhì)得出BE、CE的長(zhǎng),進(jìn)而得出答案;

(2) 延長(zhǎng)EM,CD交于點(diǎn)N,連接CM.通過(guò)證明△AEM≌△DNM,可得EMMN,然后由直角三角形斜邊的中線等于斜邊的一半可證MNMC,然后根據(jù)三角形外角的性質(zhì)證明即可.

1)解:∵MAD的中點(diǎn),AM2AE4

AD2AM8.在ABCD的面積中,BCCD8

又∵CEAB,

∴∠BEC90°,

∵∠BCE30°,

BEBC4,

AB6,CE4,

ABCD的面積為:AB×CE6×424

2)證明:延長(zhǎng)EM,CD交于點(diǎn)N,連接CM

∵在ABCD中,ABCD,

∴∠AEM=∠N

在△AEM和△DNM

∵∠AEM=N,

AM=DM

AME=DMN,

∴△AEM≌△DNMASA),

EMMN,

又∵ABCDCEAB,

CECD

CMRtECN斜邊的中線,

MNMC,

∴∠N=∠MCN,

∴∠EMC2N2AEM

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC為等邊三角形,∠BAD=ACF=CBE,求∠DEC的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面內(nèi),兩條直線相交時(shí)最多有1個(gè)交點(diǎn),三條直線相交時(shí)最多有3個(gè)交點(diǎn),四條直線相交時(shí)最多有6個(gè)交點(diǎn),,那么十條直線相交時(shí)最多有____個(gè)交點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,OE平分∠BOD

1)若∠AOC60°,求∠BOE的度數(shù);

2)若OF平分∠AOD,試說(shuō)明OEOF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(問(wèn)題原型)

如圖①,ABCD,點(diǎn)M在直線AB、CD之間,則∠M=∠B+D,小明解決上述問(wèn)題的過(guò)程如下:

如圖②,過(guò)點(diǎn)MMNAB

則∠B______________

ABCD,(已知)

MNAB(輔助線的做法)

MNCD______

∴∠______=∠D______

∴∠B+D=∠BMD

請(qǐng)完成小明上面的過(guò)程.

(問(wèn)題遷移)

如圖③,ABCD,點(diǎn)M與直線CD分別在AB的兩側(cè),猜想∠M、∠B、∠D之間有怎樣的數(shù)量關(guān)系,并加以說(shuō)明.

(推廣應(yīng)用)

1)如圖④,ABCD,點(diǎn)M在直線ABCD之間,∠ABM的平分線與∠CDM的平分線交于點(diǎn)N,∠M96°,則∠N_____°

2)如圖⑤,ABCD,點(diǎn)M與直線CD分別在AB的兩側(cè),∠ABM的平分線與∠CDM的平分線交于點(diǎn)N,∠N25°,則∠M______°;

3)如圖⑥,ABCD,∠ABG的平分線與∠CDE的平分線交于點(diǎn)M,∠G78°,∠F64°,∠E64°,則∠M_______°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,于點(diǎn)E于點(diǎn)D;點(diǎn)FAB的中點(diǎn),連結(jié)DF,EF,設(shè),,則  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:=8,則點(diǎn)A(1,a)關(guān)于y軸的對(duì)稱點(diǎn)為點(diǎn)B,將點(diǎn)B向下平移2個(gè)單位后,再向左平移3個(gè)單位得到點(diǎn)C,則C點(diǎn)與原點(diǎn)及A點(diǎn)所圍成的三角形的面積為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操作題

(1)畫圖并填空.

已知ABC中,∠ACB = 90°,AC = 3個(gè)單位,BC = 4個(gè)單位.(1)畫出把ABC 沿射線BC方向平移2個(gè)單位后得到DEF;直接寫出DCF的面積為 .

(2)小明有一張邊長(zhǎng)為13cm的正方形紙片(如圖1),他想將其剪拼成一塊一邊為8cm,的長(zhǎng)方形紙片.他想了一下,不一會(huì)兒就把原來(lái)的正方形紙片剪拼成了一張寬8cm,長(zhǎng)21cm的長(zhǎng)方形紙片(如圖2),你認(rèn)為小明剪拼得對(duì)嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABACBEAC于點(diǎn)E,CFAB于點(diǎn)F,BE,CF交于點(diǎn)D,則下列結(jié)論中不正確的是(  )

A. ABE≌△ACF B. 點(diǎn)DBAC的平分線上

C. BDF≌△CDE D. DBE的中點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案