【題目】已知關(guān)于x方程x2-6x+m+4=0有兩個實數(shù)根x1,x2
(1)求m的取值范圍.
(2)若,求m的值.
【答案】(1)m≤5;(2)4或 -76
【解析】
(1)由方程有兩個實數(shù)根結(jié)合根的判別式,即可得出關(guān)于m的一元一次不等式,解之即可得出m的取值范圍;
(2)由x12=4x22得到:x1=±2x2,利用根與系數(shù)的關(guān)系代入計算即可.
解:(1))∵方程x2-6x+m+4=0有兩個實數(shù)根x1、x2,
∴△=(-6)2-4(m+4)=20-4m≥0,
∴m≤5.
(2))∵x12=4x22,
∴x1=±2x2.
①x1+x2=6.當(dāng)x1=2x2時,x2=2,x1=4,m=x1x2-4=8-4=4.
②x1+x2=6.當(dāng)x1=-2x2時,x2=-6,x1=12,m=x1x2-4=-72-4=-76.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于A,B兩點.
(1)求的面積;
(2)觀察圖象,可知一次函數(shù)值小于反比例函數(shù)值的x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購買60件A商品和30件B商品共用了1080元,購買50件A商品和20件B商品共用了880元.
(1)A、B兩種商品的單價分別是多少元?
(2)已知該商店購買B商品的件數(shù)比購買A商品的件數(shù)的2倍少4件,如果需要購買A、B兩種商品的總件數(shù)不少于32件,且該商店購買的A、B兩種商品的總費用不超過296元,那么該商店有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC的平分線BD交AC于點D,DE⊥BD交AB于點E,設(shè)⊙O是△BDE的外接圓.
(1)求證:AC是⊙O的切線;
(2)探究線段BC,BD,BO之間的數(shù)量關(guān)系,并證明;
(3)若DC=2,BC=4,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線與軸交于兩點,與軸交于點,,矩形的邊,延長交拋物線于點.
(1)求拋物線的表達式;
(2)如圖2,點是直線上方拋物線上的一個動點,過點作軸的平行線交直線于點,作,垂足為.設(shè)的長為,點的橫坐標(biāo)為,求與的函數(shù)關(guān)系是(不必寫出的取值范圍),并求出的最大值;
(3)如果點是拋物線對稱軸上的一點,拋物線上是否存在點,使得以為頂點的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸交于A(1,0),B(3,0)兩點與y軸交于點C,D為拋物線頂點.
(1)求拋物線的解析式;
(2)如圖1,過點C的直線交拋物線于另一點E,若∠ACE=60°,求點E的坐標(biāo).
(3)如圖2,直線交拋物線于P,Q兩點,求△DPQ面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點D坐標(biāo)為(2,﹣1),且過點B(3,0),與y軸交于點C.
(1)求拋物線的解析式及點C的坐標(biāo);
(2)連結(jié)OD、CD、CB,CD交x軸于點E,求S△CEB:S△ODE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的邊AB的解析式為y=ax+2,頂點C,D在雙曲線y=(k>0)上.若AB=2AD,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的袋子中裝有除顏色外其余均相同的m個小球,其中 5 個黑球, 從袋中隨機摸出一球,記下其顏色,這稱為依次摸球試驗,之后把它放回袋 中,攪勻后,再繼續(xù)摸出一球.以下是利用計算機模擬的摸球試驗次數(shù)與摸出黑球次數(shù)的列表:
摸球試驗次數(shù) | 100 | 1000 | 5000 | 10000 | 50000 | 100000 |
摸出黑球次數(shù) | 46 | 487 | 2506 | 5008 | 24996 | 50007 |
根據(jù)列表,可以估計出 m 的值是( )
A. 5 B. 10 C. 15 D. 20
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com