【題目】已知關(guān)于x方程x2-6x+m+4=0有兩個實數(shù)根x1,x2

1)求m的取值范圍.

2)若,求m的值.

【答案】1m≤5;(24 -76

【解析】

1)由方程有兩個實數(shù)根結(jié)合根的判別式,即可得出關(guān)于m的一元一次不等式,解之即可得出m的取值范圍;

2)由x12=4x22得到:x1=±2x2,利用根與系數(shù)的關(guān)系代入計算即可.

解:(1))∵方程x2-6x+m+4=0有兩個實數(shù)根x1、x2

∴△=-62-4m+4=20-4m0

m5

2))∵x12=4x22,

x1=±2x2

x1+x2=6.當(dāng)x1=2x2時,x2=2,x1=4,m=x1x2-4=8-4=4

x1+x2=6.當(dāng)x1=-2x2時,x2=-6,x1=12m=x1x2-4=-72-4=-76

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于AB兩點.

1)求的面積;

2)觀察圖象,可知一次函數(shù)值小于反比例函數(shù)值的x的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購買60件A商品和30件B商品共用了1080元,購買50件A商品和20件B商品共用了880元.

(1)A、B兩種商品的單價分別是多少元?

(2)已知該商店購買B商品的件數(shù)比購買A商品的件數(shù)的2倍少4件,如果需要購買A、B兩種商品的總件數(shù)不少于32件,且該商店購買的A、B兩種商品的總費用不超過296元,那么該商店有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC的平分線BDAC于點DDE⊥BDAB于點E,設(shè)⊙O△BDE的外接圓.

1)求證:AC⊙O的切線;

2)探究線段BC,BDBO之間的數(shù)量關(guān)系,并證明;

3)若DC=2,BC=4,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線軸交于兩點,與軸交于點,,矩形的邊,延長交拋物線于點.

(1)求拋物線的表達式;

(2)如圖2,點是直線上方拋物線上的一個動點,過點軸的平行線交直線于點,作,垂足為.設(shè)的長為,點的橫坐標(biāo)為,求的函數(shù)關(guān)系是(不必寫出的取值范圍),并求出的最大值;

(3)如果點是拋物線對稱軸上的一點,拋物線上是否存在點,使得以為頂點的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線x軸交于A(1,0)B(3,0)兩點與y軸交于點CD為拋物線頂點.

1)求拋物線的解析式;

2)如圖1,過點C的直線交拋物線于另一點E,若∠ACE=60°,求點E的坐標(biāo).

3)如圖2,直線交拋物線于PQ兩點,求△DPQ面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yax2+bx+ca0)的頂點D坐標(biāo)為(2,﹣1),且過點B3,0),與y軸交于點C

1)求拋物線的解析式及點C的坐標(biāo);

2)連結(jié)ODCD、CBCDx軸于點E,求SCEBSODE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的邊AB的解析式為yax+2,頂點C,D在雙曲線yk0)上.若AB2AD,則k_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的袋子中裝有除顏色外其余均相同的m個小球,其中 5 個黑球, 從袋中隨機摸出一球,記下其顏色,這稱為依次摸球試驗,之后把它放回袋 中,攪勻后,再繼續(xù)摸出一球以下是利用計算機模擬的摸球試驗次數(shù)與摸出黑球次數(shù)的列表:

摸球試驗次數(shù)

100

1000

5000

10000

50000

100000

摸出黑球次數(shù)

46

487

2506

5008

24996

50007

根據(jù)列表,可以估計出 m 的值是(

A. 5 B. 10 C. 15 D. 20

查看答案和解析>>

同步練習(xí)冊答案