【題目】為了鼓勵市民節(jié)約用水,某市居民生活用水按階梯式水價計費,表是該市居民一戶一表生活用水階梯式計費價格表的一部分信息:(水價計費=自來水銷售費用+污水處理費用)

自來水銷售價格

污水處理價格

每戶每月用水量

單價:元/

單價:元/

17噸及以下

a

0.80

超過17噸不超過30噸的部分

b

0.80

超過30噸的部分

6.00

0.80

已知小王家20124月份用水20噸,交水費66元;5月份用水25噸,交水費91元.

(1)求a,b的值.

(2)小王家6月份交水費184元,則小王家6月份用水多少噸?

【答案】(1)a的值是2.2,b的值是4.4;(2)小王家6月份用水量40噸.

【解析】

(1)根據(jù)題意和表格可以列出相應(yīng)的二元一次方程組,從而可以求出a、b的值;

(2)根據(jù)題意可以列出相應(yīng)的方程,從而可以求得小王家本月用水量為多少噸.

(1)根據(jù)題意可得,

,

解得,

a的值是2.2,b的值是4.4;

(2)設(shè)小王家6月份用水x噸,

根據(jù)題意知,30噸的水費為:17×2.2+13×4.2+30×0.8=116,

184>116,

∴小王家6月份計劃用水超過了30

6.0(x﹣30)+116+0.80×(x﹣30)=184,

解得,x=40

即小王家6月份用水量40噸.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y= x2+bx+c的圖象經(jīng)過點A(﹣3,6),并與x軸交于點B(﹣1,0)和點C,與y軸交于點E,頂點為P,對稱軸與x軸交于點D
(1)求這個二次函數(shù)的解析式;
(2)連接CP,△DCP是什么特殊形狀的三角形?并加以說明;
(3)點Q是第一象限的拋物線上一點,且滿足∠QEO=∠BEO,求出點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,邊AB、AC的垂直平分線分別交BCD、E.

(1)若BC=5,求ADE的周長.

(2)若∠BAC=120°,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,二次函數(shù)y=ax2+bx+c的圖象中,王剛同學(xué)觀察得出了下面四條信息:(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0,其中錯誤的有( )

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,任意四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA上的點,對于四邊形EFGH的形狀,某班學(xué)生在一次數(shù)學(xué)活動課中,通過動手實踐,探索出如下結(jié)論,其中錯誤的是(

A.當(dāng)E,F(xiàn),G,H是各邊中點,且AC=BD時,四邊形EFGH為菱形

B.當(dāng)E,F(xiàn),G,H是各邊中點,且ACBD時,四邊形EFGH為矩形

C.當(dāng)E,F(xiàn),G,H不是各邊中點時,四邊形EFGH可以為平行四邊形

D.當(dāng)E,F(xiàn),G,H不是各邊中點時,四邊形EFGH不可能為菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若平行四邊形ABCD的一個角的平分線把一條邊分成長是4cm5cm的兩條線段,則平行四邊形ABCD的周長是__________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:是最小的兩位正整數(shù),且、滿足請回答問題:

1)請直接寫出、、的值:

2)在數(shù)軸上、所對應(yīng)的點分別為、、

①記、兩點間的距離為,則 , ;

②點為該數(shù)軸的動點,其對應(yīng)的數(shù)為x,點在點與點之間運動時(包含端點),則 , .

(3)在(1)(2)條件下,若點出發(fā),以每秒個單位長度的速度向點移動,當(dāng)點運動到點時,點出發(fā),以每秒個單位長度向點運動,點M、到達(dá)點后,再立即以自身同樣的速度返回點. 設(shè)點移動時間為秒,當(dāng)點開始運動后,請用含的代數(shù)式表示兩點間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】程大位所著《算法統(tǒng)宗》是一部中國傳統(tǒng)數(shù)學(xué)重要的著作.在《算法統(tǒng)宗》中記載:“平地秋千未起,踏板離地一尺.送行二步與人齊,五尺人高曾記.仕女佳人爭蹴,終朝笑語歡嬉.良工高士素好奇,算出索長有幾?”【注釋】1步=5尺.
譯文:“當(dāng)秋千靜止時,秋千上的踏板離地有1尺高,如將秋千的踏板往前推動兩步(10尺)時,踏板就和人一樣高,已知這個人身高是5尺.美麗的姑娘和才子們,每天都來爭蕩秋千,歡聲笑語終日不斷.好奇的能工巧匠,能算出這秋千的繩索長是多少嗎?”
如圖,假設(shè)秋千的繩索長始終保持直線狀態(tài),OA是秋千的靜止?fàn)顟B(tài),A是踏板,CD是地面,點B是推動兩步后踏板的位置,弧AB是踏板移動的軌跡.已知AC=1尺,CD=EB=10尺,人的身高BD=5尺.設(shè)繩索長OA=OB=x尺,則可列方程為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線y=x2+(b﹣1)x﹣5.
(1)寫出拋物線的開口方向和它與y軸交點的坐標(biāo);
(2)若拋物線的對稱軸為直線x=1,求b的值,并畫出拋物線的草圖(不必列表);
(3)如圖,若b>3,過拋物線上一點P(﹣1,c)作直線PA⊥y軸,垂足為A,交拋物線于另一點B,且BP=2PA,求這條拋物線所對應(yīng)的二次函數(shù)解析式.

查看答案和解析>>

同步練習(xí)冊答案