【題目】如圖, 是半圓的直徑, 是半圓上的一點(diǎn), 切半圓于點(diǎn)于為點(diǎn),與半圓交于點(diǎn)

(1)求證: 平分;

(2),求圓的直徑.

【答案】(1)見解析;(2)

【解析】

1)連結(jié)OC,如圖,根據(jù)切線的性質(zhì)得OCCD,則OCBD,所以∠1=3,加上∠1=2,從而得到∠2=3;
2)連結(jié)AEOCG,如圖,利用圓周角定理得到∠AEB=90°,再證明四邊形CDEG為矩形得到GE=CD=8,然后利用勾股定理計(jì)算AB的長(zhǎng)即可.

解:(1)證明:連結(jié)OC,如圖,
CD為切線,
OCCD
BDDF,
OCBD,
∴∠1=3,
OB=OC,
∴∠1=2
∴∠2=3,
BC平分∠ABD
2)解:連結(jié)AEOCG,如圖,
AB為直徑,
∴∠AEB=90°,
OCBD,
OCCD
AG=EG,
易得四邊形CDEG為矩形,
GE=CD=8,
AE=2EG=16,
RtABE中,AB==,

即圓的直徑為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,弧ED=BD,連接EDBD,延長(zhǎng)AEBD的延長(zhǎng)線于點(diǎn)M,過(guò)點(diǎn)D⊙O的切線交AB的延長(zhǎng)線于點(diǎn)C

1)若OACD,求陰影部分的面積;

2)求證:DEDM

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】例:利用函數(shù)圖象求方程x22x20的實(shí)數(shù)根(結(jié)果保留小數(shù)點(diǎn)后一位).

解:畫出函數(shù)yx22x2的圖象,它與x軸的公共點(diǎn)的橫坐標(biāo)大約是﹣0.72.7.所以方程x22x20的實(shí)數(shù)根為x10.7,x2≈2.7.我們還可以通過(guò)不斷縮小根所在的范圍估計(jì)一元二次方程的根.……這種求根的近似值的方法也適用于更高次的一元方程.

根據(jù)你對(duì)上面教材內(nèi)容的閱讀與理解,解決下列問題:

1)利用函數(shù)圖象確定不等式x24x+30的解集是   ;利用函數(shù)圖象確定方程x24x+3的解是   

2)為討論關(guān)于x的方程|x24x+3|m解的情況,我們可利用函數(shù)y|x24x+3|的圖象進(jìn)行研究.

①請(qǐng)?jiān)诰W(wǎng)格內(nèi)畫出函數(shù)y|x24x+3|的圖象;

②若關(guān)于x的方程|x24x+3|m有四個(gè)不相等的實(shí)數(shù)解,則m的取值范圍為   

③若關(guān)于x的方程|x24x+3|m有四個(gè)不相等的實(shí)數(shù)解x1,x2,x3x4x1x2x3x4),滿足x4x3x3x2x2x1,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,的直徑,點(diǎn)上一點(diǎn),點(diǎn)是弧的中點(diǎn),弦于點(diǎn),過(guò)點(diǎn)的切線交的延長(zhǎng)線于點(diǎn),連接,分別交于點(diǎn),連接.給出下列結(jié)論:;②;③點(diǎn)的外心;④.其中正確的是( )

A.①②③B.②③④C.①③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,G是正方形ABCD對(duì)角線AC上一點(diǎn),作GEAD,GFAB,垂足分別為點(diǎn)EF.

求證:四邊形AFGE與四邊形ABCD相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中的位置如圖所示,直線與雙曲線在第一象限的圖象相交于A,E兩點(diǎn),且,EBC的中點(diǎn).

1)連接OE,若的面積為,的面積為,則________.(直接填“”“”或“”);

2)求的解析式;

3)請(qǐng)直接寫出當(dāng)x取何值時(shí)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k0)的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.

(1)求此反比例函數(shù)的表達(dá)式;

(2)若點(diǎn)P在x軸上,且SACP=SBOC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校初三(1)班50名學(xué)生需要參加體育“五選一”自選項(xiàng)目測(cè)試,班上學(xué)生所報(bào)自選項(xiàng)目的情況統(tǒng)計(jì)表如下:

(1)求a,b的值;

(2)若將各自選項(xiàng)目的人數(shù)所占比例繪制成扇形統(tǒng)計(jì)圖,求“一分鐘跳繩”對(duì)應(yīng)扇形的圓心角的度數(shù);

(3)在選報(bào)“推鉛球”的學(xué)生中,有3名男生,2名女生.為了了解學(xué)生的訓(xùn)練效果,從這5名學(xué)生中隨機(jī)抽取兩名學(xué)生進(jìn)行推鉛球測(cè)試,求所抽取的兩名學(xué)生中至多有一名女生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案