精英家教網 > 初中數學 > 題目詳情

【題目】一個不透明的袋中裝有5個黃球,13個黑球和22個紅球,它們除顏色外都相同.
(1)求從袋中摸出一個球是黃球的概率;
(2)現從袋中取出若干個黑球,并放入相同數量的黃球,攪拌均勻后使從袋中摸出一個是黃球的概率不小于 ,問至少取出了多少個黑球?

【答案】
(1)解:∵一個不透明的袋中裝有5個黃球,13個黑球和22個紅球,

∴摸出一個球摸是黃球的概率為: =


(2)解:設取走x個黑球,則放入x個黃球,

由題意,得

解得:x≥

∵x為整數,

∴x的最小正整數解是x=9.

答:至少取走了9個黑球.


【解析】(1)根據概率公式,求摸到黃球的概率,即用黃球的個數除以小球總個數即可得出得到黃球的概率;(2)假設取走了x個黑球,則放入x個黃球,進而利用概率公式得出不等式,求出即可.
【考點精析】掌握概率公式是解答本題的根本,需要知道一般地,如果在一次試驗中,有n種可能的結果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結果,那么事件A發(fā)生的概率為P(A)=m/n.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知在Rt△OAC中,O為坐標原點,直角頂點C在x軸的正半軸上,反比例函數y= (k≠0)在第一象限的圖象經過OA的中點B,交AC于點D,連接OD.若△OCD∽△ACO,則直線OA的解析式為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】復習課中,教師給出關于x的函數y=2kx2﹣(4k+1)x﹣k+1(k是實數).
教師:請獨立思考,并把探索發(fā)現的與該函數有關的結論(性質)寫到黑板上.
學生思考后,黑板上出現了一些結論.教師作為活動一員,又補充一些結論,并從中選出以下四條:
①存在函數,其圖象經過(1,0)點;
②函數圖象與坐標軸總有三個不同的交點;
③當x>1時,不是y隨x的增大而增大就是y隨x的增大而減。
④若函數有最大值,則最大值必為正數,若函數有最小值,則最小值必為負數.
教師:請你分別判斷四條結論的真假,并給出理由.最后簡單寫出解決問題時所用的數學方法.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】先閱讀,后解答:

(1)由根式的性質計算下列式子得:

=3,②,③,④=5,⑤=0.

由上述計算,請寫出的結果(a為任意實數).

(2)利用(1)中的結論,計算下列問題的結果:

;

化簡:(x<2).

(3)應用:

=3,求x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市團委舉辦“我的中國夢”為主題的知識競賽,甲、乙兩所學校參賽人數相等,比賽結束后,發(fā)現學生成績分別為70分、80分、90分、100分,并根據統(tǒng)計數據繪制了如下不完整的統(tǒng)計圖表:

乙校成績統(tǒng)計表

分數/分

人數/人

70

7

80

90

1

100

8

(1)在圖①中,“80分”所在扇形的圓心角度數為________;

(2)請你將圖②補充完整;

(3)求乙校成績的平均分;

(4)經計算知s2=135,s2=175,請你根據這兩個數據,對甲、乙兩校成績作出合理評價.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】五一節(jié),小麗獨自一人去老家玩,家住在車站附近的姑姑到車站去接小麗.因為擔心小麗下車后找不到路,姑姑一路小跑來到車站,結果客車晚點,休息一陣后,姑姑接到小麗,和小麗一起慢慢的走回了家.下列圖象中,能反映以上過程中小麗姑姑離家的距離s與時間t的關系的大致圖象是(

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點B,C,E,F在一直線上,AB∥DC,DE∥GF,∠B=∠F=72°,則∠D=度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小敏在作⊙O的內接正五邊形時,先做了如下幾個步驟:
(i)作⊙O的兩條互相垂直的直徑,再作OA的垂直平分線交OA于點M,如圖1;
(ii)以M為圓心,BM長為半徑作圓弧,交CA于點D,連結BD,如圖2.若⊙O的半徑為1,則由以上作圖得到的關于正五邊形邊長BD的等式是( )

A.BD2= OD
B.BD2= OD
C.BD2= OD
D.BD2= OD

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】端午節(jié)快到了,某市共青團組織以“中學生最喜歡項節(jié)日活動”為主題題進行了簡單的隨機抽樣調查,讓學生從“郊外踏青、品嘗美食、觀賞電影、參觀室館”四項活動中選擇一項,然后繪制出以下兩幅不完整的統(tǒng)計圖.請根據圖中的信息,回答下列問題:
(1)這次抽樣調查中共調查了人;扇形統(tǒng)計圖中郊外踏青部分的圓心角的度數是°;
(2)請補全條形統(tǒng)計圖;
(3)某市有中學生3萬人,請估計選擇郊外踏青的人數有多少?

查看答案和解析>>

同步練習冊答案