【題目】如圖,ABCD為矩形紙片,E、F分別為ABDC上的點(diǎn),將此矩形兩次翻折,RMFN為折痕,其中、分別為A、D的對(duì)應(yīng)點(diǎn);且點(diǎn)在射線EF上;、分別為B、C的對(duì)應(yīng)點(diǎn),且點(diǎn)在射線FE.

1)求證:四邊形ENFM為平行四邊形;

2)若四邊形ENFM為菱形,求∠EMF的度數(shù).

【答案】(1)見解析;(2)60°

【解析】

1)根據(jù)翻折的性質(zhì)和平行四邊形的判定證明即可;

2)根據(jù)菱形的性質(zhì)和等邊三角形的判定和性質(zhì)解答即可.

證明:(1)∵矩形ABCD,

AB//CD

∴∠CFE=AEF,

由翻折可得:∠AEM=MEF,∠CFN=EFN

∴∠MEF=EFN,

ME//FN

∴四邊形ENFM是平行四邊形;

(2)∵四邊形ENFM為菱形,

MF=ME,

∴∠MFE=MEF,

AB//CD,

∴∠MFE=FEN

∵∠AEM=MEF,

∵∠AEM+MEF+FEN=180,

∴∠AEM=60°,

∴∠EMF=60°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(問(wèn)題背景)如圖1所示,在中,,,點(diǎn)D為直線上的個(gè)動(dòng)點(diǎn)(不與BC重合),連結(jié),將線段繞點(diǎn)D按順時(shí)針?lè)较蛐D(zhuǎn)90°,使點(diǎn)A旋轉(zhuǎn)到點(diǎn)E,連結(jié).

(問(wèn)題初探)如果點(diǎn)D在線段上運(yùn)動(dòng),通過(guò)觀察、交流,小明形成了以下的解題思路:過(guò)點(diǎn)E交直線F,如圖2所示,通過(guò)證明______,可推證_____三角形,從而求得______°.

(繼續(xù)探究)如果點(diǎn)D在線段的延長(zhǎng)線上運(yùn)動(dòng),如圖3所示,求出的度數(shù).

(拓展延伸)連接,當(dāng)點(diǎn)D在直線上運(yùn)動(dòng)時(shí),若,請(qǐng)直接寫出的最小值.

1 2 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們將能完全覆蓋某平面圖形的最小圓稱為該平面圖形的最小覆蓋圓.例如線段AB的最小覆蓋圓就是以線段AB為直徑的圓.

1)請(qǐng)分別作出下圖中兩個(gè)三角形的最小覆蓋圓(要求用尺規(guī)作圖,保留作圖痕跡,不寫作法);

2)探究三角形的最小覆蓋圓有何規(guī)律?請(qǐng)寫出你所得到的結(jié)論(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知頂點(diǎn)為的拋物線軸交于兩點(diǎn),直線過(guò)頂點(diǎn)和點(diǎn)

(1)求的值;

(2)求函數(shù)的解析式;

(3)拋物線上是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E,F(xiàn)分別在邊BC,CD上,且BE=CF.連接AE,BF,AEBF交于點(diǎn)G.下列結(jié)論錯(cuò)誤的是(  )

A. AE=BF B. ∠DAE=∠BFC

C. ∠AEB+∠BFC=90° D. AE⊥BF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道:任何有理數(shù)的平方都是一個(gè)非負(fù)數(shù),即對(duì)于任何有理數(shù)a,都有 成立,所以,當(dāng)時(shí),有最小值0.

(應(yīng)用):(1)代數(shù)式有最小值時(shí), ;

2)代數(shù)式的最小值是

(探究):求代數(shù)式的最小值,小明是這樣做的:

∴當(dāng)時(shí),代數(shù)式有最小值,最小值為5

3)請(qǐng)你參照小明的方法,求代數(shù)式的最小值,并求此時(shí)a的值.

(拓展):(4)若,直接寫出y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y軸交于B,與x軸交于點(diǎn)D、A,點(diǎn)A在點(diǎn)D的右邊,頂點(diǎn)為F,

1)直接寫出點(diǎn)BA、F的坐標(biāo);

2)設(shè)Q在該拋物線上,且,求點(diǎn)Q的坐標(biāo);

3)對(duì)大于1常數(shù)m,在x軸上是否存在點(diǎn)M,使得?若存在,求出點(diǎn)M坐標(biāo);若不存在,說(shuō)明理由?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我省南部的南宮山景區(qū),為吸引游客組團(tuán)來(lái)此旅游特推出了如下門票收費(fèi)標(biāo)準(zhǔn):

標(biāo)準(zhǔn)一:如果人數(shù)不超過(guò)20人,門票價(jià)格70/

標(biāo)準(zhǔn)二:如果人數(shù)超過(guò)20人,每超過(guò)1人,門票價(jià)格降低2元,但門票價(jià)格不低于55/

1)若某單位組織22名員工去南宮山景區(qū)旅游,則購(gòu)買門票共需多少元?

2)若某單位共支付南宮山景區(qū)門票費(fèi)用1500元,試求該單位這次共有多少名員工去南宮山旅游.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,一枚質(zhì)地均勻的正六面體骰子的六個(gè)面分別標(biāo)有數(shù)字,,,,,如圖2,正方形的頂點(diǎn)處各有一個(gè)圈,跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子朝上的那面上的數(shù)字是幾,就沿正方形的邊按順時(shí)針?lè)较蜻B續(xù)跳幾個(gè)邊長(zhǎng)。如:若從圈起跳,第一次擲得,就順時(shí)針連續(xù)跳個(gè)邊長(zhǎng),落在圈;若第二次擲得,就從圈開始順時(shí)針連續(xù)跳個(gè)邊長(zhǎng),落得圈設(shè)游戲者從圈起跳.

1)小賢隨機(jī)擲一次骰子,求落回到圈的概率.

2)小南隨機(jī)擲兩次骰子,用列表法求最后落回到圈的概率,并指出他與小賢落回到圈的可能性一樣嗎?

查看答案和解析>>

同步練習(xí)冊(cè)答案