【題目】我們知道:任何有理數(shù)的平方都是一個(gè)非負(fù)數(shù),即對(duì)于任何有理數(shù)a,都有 成立,所以,當(dāng)時(shí),有最小值0.

(應(yīng)用):(1)代數(shù)式有最小值時(shí), ;

2)代數(shù)式的最小值是

(探究):求代數(shù)式的最小值,小明是這樣做的:

∴當(dāng)時(shí),代數(shù)式有最小值,最小值為5

3)請(qǐng)你參照小明的方法,求代數(shù)式的最小值,并求此時(shí)a的值.

(拓展):(4)若,直接寫出y的取值范圍.

【答案】(1)1;(2)3;(3)-12;(4)

【解析】

1)由(x-12≥0可得x=1時(shí),取得最小值0;

2)由m2≥0m2+3≥3可得答案;

3)將原式變形為(a-32-12,參照小明的方法求解即可;

4)由y=-4t2+12t+6=-4t-2+15-4t-2+15≤15,從而得出答案.

1,當(dāng)時(shí),可得最小值為0,

故答案為:1;

2,

的最小值是當(dāng)時(shí),最小值為3,

故答案為:3;

3

當(dāng)時(shí),的最小值為;

4y=-4t2+12t+6

=-4t2-3t+6

=-4t2-3t+-+6

=-4t-2+15

∵(t-2≥0,

-4t-2≤0,

-4t-2+15≤15,即y≤15

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖示一架水平飛行的無(wú)人機(jī)AB的尾端點(diǎn)A測(cè)得正前方的橋的左端點(diǎn)P的

俯角為α其中tanα=2,無(wú)人機(jī)的飛行高度AH為500米,橋的長(zhǎng)度為1255米.

求點(diǎn)H到橋左端點(diǎn)P的距離;

若無(wú)人機(jī)前端點(diǎn)B測(cè)得正前方的橋的右端點(diǎn)Q的俯角為30°,求這架無(wú)人機(jī)的長(zhǎng)度AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)解方程:x25x60

2)如圖,ABC中∠C90°

①將ABCA點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的三角形ABC

②若BC3,AC4B點(diǎn)旋轉(zhuǎn)后的對(duì)應(yīng)是B,求 的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),某數(shù)學(xué)活動(dòng)小組經(jīng)探究發(fā)現(xiàn):在⊙O中,直徑AB與弦CD相交于點(diǎn)P,此時(shí)PA· PB=PC·PD

1)如圖(2),若ABCD相交于圓外一點(diǎn)P, 上面的結(jié)論是否成立?請(qǐng)說(shuō)明理由.

2)如圖(3,PD繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)至與⊙O相切于點(diǎn)C, 直接寫出PA、PB、PC之間的數(shù)量關(guān)系.

3)如圖(3),直接利用(2)的結(jié)論,求當(dāng) PC= ,PA=1時(shí),陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD為矩形紙片,E、F分別為AB、DC上的點(diǎn),將此矩形兩次翻折,RMFN為折痕,其中、分別為A、D的對(duì)應(yīng)點(diǎn);且點(diǎn)在射線EF上;分別為B、C的對(duì)應(yīng)點(diǎn),且點(diǎn)在射線FE.

1)求證:四邊形ENFM為平行四邊形;

2)若四邊形ENFM為菱形,求∠EMF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分10分)如圖,一次函數(shù)的圖象與反比例函數(shù)為常數(shù),且)的圖象交于A1,a)、B兩點(diǎn).

1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);

2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中(如圖),已知二次函數(shù)(其中a、b、c是常數(shù),且a0)的圖像經(jīng)過(guò)點(diǎn)A0,-3)、B1,0)、C3,0),聯(lián)結(jié)AB、AC

1)求這個(gè)二次函數(shù)的解析式;

2)點(diǎn)D是線段AC上的一點(diǎn),聯(lián)結(jié)BD,如果,求tan∠DBC的值;

3)如果點(diǎn)E在該二次函數(shù)圖像的對(duì)稱軸上,當(dāng)AC平分∠BAE時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A1、A2A3、Anx軸上,且OA1A1A2A2A3An1An1,分別過(guò)點(diǎn)A1、A2、A3……、Anx軸的垂線,交反比例函數(shù)yx0)的圖象于點(diǎn)B1、B2B3、Bn,過(guò)點(diǎn)B2B2P1A1B1于點(diǎn)P1,過(guò)點(diǎn)B3B3P2A2B2于點(diǎn)P2,,若記B1P1B2的面積為S1,B2P2B3的面積為S2,,BnPnBn+1的面積為Sn,則S1+S2+…+S2019_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是一塊銳角三角形余料,邊BC=120 mm,高AD=80mm,要把它加工成矩形零件PQMN,使矩形PQMN的邊QMBC上,其余兩個(gè)項(xiàng)點(diǎn)PN分別在AB,AC上.

1)當(dāng)矩形的邊PN=PQ時(shí),求此時(shí)矩形零件PQMN的面積;

2)求這個(gè)矩形零件PQMN面積S的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案