【題目】如圖,Rt△AOB中,∠AOB=90°,OA在x軸上,OB在y軸上,點(diǎn)A,B的坐標(biāo)分別為( ,0),(0,1),把Rt△AOB沿著AB對(duì)折得到Rt△AO′B,則點(diǎn)O′的坐標(biāo)為

【答案】
【解析】解:如圖,作O′C⊥y軸于點(diǎn)C,

∵點(diǎn)A,B的坐標(biāo)分別為( ,0),(0,1),∴OB=1,OA= ,∴tan∠BAO= = ,
∴∠BAO=30°,
∴∠OBA=60°,
∵Rt△AOB沿著AB對(duì)折得到Rt△AO′B,
∴∠CBO′=60°,
∴設(shè)BC=x,則OC′= x,∴x2+( x)2=1,解得:x= (負(fù)值舍去),∴OC=OB+BC=1+ = ,∴點(diǎn)O′的坐標(biāo)為( ).
故答案為:( , ).
作O′C⊥y軸于點(diǎn)C,首先根據(jù)點(diǎn)A,B的坐標(biāo)分別為( ,0),(0,1)得到∠BAO=30°,從而得出∠OBA=60°,然后根據(jù)Rt△AOB沿著AB對(duì)折得到Rt△AO′B,得到∠CBO′=60°,最后設(shè)BC=x,則OC′= x,利用勾股定理求得x的值即可求解. 本題考查了翻折變換及坐標(biāo)與圖形的性質(zhì)的知識(shí),解題的關(guān)鍵是根據(jù)點(diǎn)A和點(diǎn)B的坐標(biāo)確定三角形為特殊三角形,難度不大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面內(nèi)的兩條直線(xiàn)有相交和平行兩種位置關(guān)系.

(1)如圖①,若AB∥CD,點(diǎn)P在AB,CD外部,則有 ∠B=∠BOD,又因?yàn)椤螧OD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.將點(diǎn)P移到AB,CD內(nèi)部,如圖②,以上結(jié)論是否成立?若成立,請(qǐng)說(shuō)明理由;若不成立,則∠BPD,∠B,∠D之間有何數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論;

(2)在圖②中,將直線(xiàn)AB繞點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn)一定角度交直線(xiàn)CD于點(diǎn)Q,如圖③,則∠BPD,∠B,∠D,∠BQD之間有何數(shù)量關(guān)系?(不需證明)

(3)根據(jù)(2)的結(jié)論,求圖④中∠A+∠B+∠C+∠D+∠E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了更好地治理水質(zhì),保護(hù)環(huán)境,我縣污水處理公司決定購(gòu)買(mǎi)10臺(tái)污水處理設(shè)備,現(xiàn)有A、B兩種設(shè)備可供選擇,月處理污水分別為240m3/月、200m3/月,經(jīng)調(diào)查:購(gòu)買(mǎi)一臺(tái)A型設(shè)備比購(gòu)買(mǎi)一臺(tái)B型設(shè)備多2萬(wàn)元,購(gòu)買(mǎi)2臺(tái)A型設(shè)備比購(gòu)買(mǎi)3臺(tái)B型設(shè)備少6萬(wàn)元.

(1)若污水處理公司購(gòu)買(mǎi)設(shè)備的預(yù)算資金不超過(guò)105萬(wàn)元,你認(rèn)為該公司有哪幾種購(gòu)買(mǎi)方案?

(2)若每月需處理的污水約2040m3,在不突破資金預(yù)算的前提下,為了節(jié)約資金,又要保證治污效果,請(qǐng)你為污水處理公司設(shè)計(jì)一種最省錢(qián)的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,平行四邊形紙片ABCD中,AD=5,S甲行四邊形紙片ABCD=15,過(guò)點(diǎn)A作AEBC,垂足為E,沿AE剪下ABE,將它平移至DCE′的位置,拼成四邊形AEE′D,則四邊形AEE′D的形狀為   

A.平行四邊形

B.菱形

C.矩形

D.正方形

(2)如圖2,在(1)中的四邊形紙片AEE′D中,在EE′上取一點(diǎn)F,使EF=4,剪下AEF,剪下AEF,將它平移至DE′F′的位置,拼成四邊形AFF′D.

求證:四邊形AFF′D是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】菱形ABCD的對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,E,F(xiàn)分別是AD,CD邊上的中點(diǎn),連接EF.若EF= ,BD=2,則菱形ABCD的面積為( )
A.2
B.
C.6
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,△A′B′C′由△ABC繞點(diǎn)P旋轉(zhuǎn)得到,則點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.

(1)求證:AB=AC;
(2)若AB=4,BC=2 ,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,⊙M與x軸相切于點(diǎn)A(8,0),與y軸分別交于點(diǎn)B(0,4)和點(diǎn)C(0,16),則圓心M到坐標(biāo)原點(diǎn)O的距離是(  )

A.10
B.8
C.4
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù)。
阿基米德(Archimedes,公元前287~公元前212年,古希臘)是有史以來(lái)最偉大的數(shù)學(xué)家之一.

阿基米德折弦定理:如圖1,AB和BC是圓O的兩條弦(即折線(xiàn)ABC是圓的一條折弦), BC>AB,M是 的中點(diǎn),即CD=AB+BD。下面是運(yùn)用“截長(zhǎng)法”證明CD=AB+BD的部分過(guò)程。
證明:如圖2,在CB上截取CG=AB,連接MA、MB、MC、MG。因?yàn)镸是弧ABC的中點(diǎn),所以MA=MC.
任務(wù):
(1)請(qǐng)按照上面的證明思路,完整證明阿基米德折弦定理,即CD=AB+BD。
(2)如圖3,已知等邊△ABC內(nèi)接于圓O,AB=1,D為 上一點(diǎn),∠ABD=45°,AE⊥BD于點(diǎn)E,則△BDC的周長(zhǎng)是.

查看答案和解析>>

同步練習(xí)冊(cè)答案