【題目】請完成以下問題:

圖1 圖2
(1)如圖1, ,弦 與半徑 平行,求證: 是⊙ 的直徑;
(2)如圖2, 是⊙ 的直徑,弦 與半徑 平行.已知圓的半徑為 , , ,求 的函數(shù)關系式.

【答案】
(1)證明:連結(jié) ,交 于點


∴OD⊥BC,即
又AC∥OD,

是圓的直徑( 的圓周角所對的弦是直徑)
(2)解:如圖,連結(jié) ,連結(jié) 于點

是⊙ 的直徑

與半徑 平行



,

的中點
的中位線



化簡得:
【解析】(1)連結(jié) B C ,交 O D 于點 H,通過證明∠ACB=∠OHB=90°,根據(jù)圓周角定理可得弦 A B 是圓的直徑;(2)連結(jié) A D , B D ,連結(jié) B C 交 O D 于點 H,根據(jù)已知條件可證DBH~DAB,得出成比例的線段,從而問題得解。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,過對角線BD上點P作直線EFGH分別平行于ABBC,那么圖中共有( )對面積相等平行四邊形.

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術的廣泛應用,催生了快遞行業(yè)的高度發(fā)展,據(jù)調(diào)查,長沙市某家小型“大學生自主創(chuàng)業(yè)”的快遞公司,今年三月份與五月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件,現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同.
(1)求該快遞公司投遞總件數(shù)的月平均增長率;
(2)如果平均每人每月最多可投遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務員能否完成今年6月份的快遞投遞任務?如果不能,請問至少需要增加幾名業(yè)務員?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圖象(折線OEFPMN)描述了某汽車在行駛過程中速度與時間的函數(shù)關系,下列說法中錯誤的是( )

A. 3分時汽車的速度是40千米/

B. 12分時汽車的速度是0千米/

C. 從第3分到第6分,汽車行駛了120千米

D. 從第9分到第12分,汽車的速度從60千米/時減少到0千米/

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某探測隊在地面A、B兩處均探測出建筑物下方C處有生命跡象,已知探測線與地面的夾角分別是25°和60°,且AB=4米,求該生命跡象所在位置C的深度.(結(jié)果精確到1米.參考數(shù)據(jù):sin25°≈0.4,cos25°≈0.9,tan25°≈0.5, ≈1.7)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為矩形的對角線,將邊沿折疊,使點落在上的點處,將邊沿折疊,使點落在上的點處.

1)求證:四邊形是平行四邊形;

2)若求四邊形的面積及之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,點DBC邊上的一點,∠B=50°,∠BAD=30°,將ABD沿AD折疊得到AEDAEBC交于點F

1)填空:∠AFC=______度;

2)求∠EDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,tan∠C= ,AB=6cm.動點P從點A開始沿邊AB向點B以1cm/s的速度移動,動點Q從點B開始沿邊BC向點C以2cm/s的速度移動.若P,Q兩點分別從A,B兩點同時出發(fā),在運動過程中,△PBQ的最大面積是( )

A.18cm2
B.12cm2
C.9cm2
D.3cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABCD的頂點A,B的坐標分別為(﹣6,0),(4,0),點Dy軸上.

1)求點C的坐標;

2)求對角線AC的長.

查看答案和解析>>

同步練習冊答案