分析 (1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(2)根據(jù)自變量與函數(shù)值的對應關系,可得C點坐標,根據(jù)平行于y軸的直線上兩點之間的距離是較大的縱坐標減較的縱坐標,可得答案;
(3)根據(jù)自變量與函數(shù)值的對應關系,可得F點坐標,根據(jù)平行于y軸的直線上兩點之間的距離是較大的縱坐標減較的縱坐標,可得DE的長,根據(jù)平行四邊形的對邊相等,可得關于m的方程,根據(jù)解方程,可得m的值.
解答 解:(1)∵點A(-1,0),點B(3,0)在拋物線y=-x2+bx+c上,
∴$\left\{\begin{array}{l}{-1+b+c=0}\\{-9+3b+c=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{b=2}\\{c=3}\end{array}\right.$,
此拋物線所對應的函數(shù)表達式y(tǒng)=-x2+2x+3;
(2)∵此拋物線所對應的函數(shù)表達式y(tǒng)=-x2+2x+3,
∴C(0,3).
設BC所在的直線的函數(shù)解析式為y=kx+b,將B、C點的坐標代入函數(shù)解析式,得
$\left\{\begin{array}{l}{3k+b=0}\\{b=3}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=-1}\\{b=3}\end{array}\right.$,
即BC的函數(shù)解析式為y=-x+3.
由P在BC上,F(xiàn)在拋物線上,得
P(m,-m+3),F(xiàn)(m,-m2+2m+3).
PF=-m2+2m+3-(-m+3)=-m2+3m.
(3)如圖,
∵此拋物線所對應的函數(shù)表達式y(tǒng)=-x2+2x+3,
∴D(1,4).
∵線段BC與拋物線的對稱軸交于點E,
當x=1時,y=-x+3=2,
∴E(1,2),
∴DE=4-2=2.
由四邊形PEDF為平行四邊形,得
PF=DE,即-m2+3m=2,
解得m1=1,m2=2.
當m=1時,線段PF與DE重合,m=1(不符合題意,舍).
當m=2時,四邊形PEDF為平行四邊形.
點評 本題考查了二次函數(shù)綜合題,利用待定系數(shù)求函數(shù)解析式;利用平行于y軸的直線上兩點之間的距離是較大的縱坐標減較的縱坐標是解題關鍵;利用平行四邊形的對邊相等得出關于m的方程是解題關鍵.
科目:初中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 12cm2 | B. | 20cm2 | C. | 24cm2 | D. | 32cm2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com