【題目】已知A,B兩地相距120千米,甲、乙兩人沿同一條公路從A地出發(fā)到B地,乙騎自行車,甲騎摩托車,圖中DE,OC分別表示甲、乙離開A地的路程s(單位:千米)與時間t(單位:小時)的函數關系的圖象,設在這個過程中,甲、乙兩人相距y(單位:千米),則y關于t的函數圖象是( )
A. B. C. D.
【答案】B
【解析】
由題意可知乙先騎自行車出發(fā),1小時后甲騎摩托車出發(fā),從而排除A、C選項,設OC的函數解析式為s=kt+b,DE的函數解析式為s=mt+n,利用待定系數法求得函數解析式,聯立求得甲乙相遇的時間,從而排除D選項.
解:由題意可設OC的函數解析式為s=kt(0≤t≤3),
將C(3,80)代入,得k=,
∴OC的函數解析式為s=t(0≤t≤3),,
設DE的函數解析式為s=mt+n(1≤t≤3),
將D(1,0),E(3,120)代入,得,
∴設DE的函數解析式為s=60t﹣60(1≤t≤3),
則t=0時,甲乙相距0千米;
當t=1時,甲乙相距千米;
當t=1.8時,甲追上乙,甲乙相距0千米;
當t=3時,甲到達B地,甲乙相距40千米.
故只有B選項符合題意.
故選B.
科目:初中數學 來源: 題型:
【題目】有兩張完全重合的矩形紙片,小亮同學將其中一張繞點A順時針旋轉90°后得到矩形AMEF(如圖1),連接BD、MF,若此時他測得BD=8cm,∠ADB=30度.請回答下列問題:(1)試探究線段BD與線段MF的關系,并簡要說明理由;
(2)小紅同學用剪刀將△BCD與△MEF剪去,與小亮同學繼續(xù)探究.他們將△ABD繞點A順時針旋轉得△AB1D1,AD1交FM于點K(如圖2),設旋轉角為β(0°<β<90°),當△AFK為等腰三角形時,請直接寫出旋轉角β的度數;
(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F2M2與AD交于點P,A2M2與BD交于點N,當NP∥AB時,求平移的距離是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知:△ABD∽△ACE,∠ABD=∠ACE=90°,連接DE,O是DE的中點。
(1)連接OC,OB 求證:OB=OC;
(2)將△ACE繞頂點A逆時針旋轉到圖2的位置,過點E作EM∥AD交射線AB于點M,交射線AC于點N,連接DM,BC. 若DE的中點O恰好在AB上。
①求證:△ADM∽△AEN
②求證:BC∥AD
③若AC=BD=3,AB=4,△ACE繞頂點A旋轉的過程中,是否存在四邊形ADME矩形的情況?如果存在,直接寫出此時BC的值,若不存在說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市東坡實驗中學準備開展“陽光體育活動”,決定開設足球、籃球、乒乓球、羽毛球、排球等球類活動,為了了解學生對這五項活動的喜愛情況,隨機調查了名學生(每名學生必選且只能選擇這五項活動中的一種).
根據以上統計圖提供的信息,請解答下列問題:
(1) , .
(2)補全上圖中的條形統計圖.
(3)若全校共有名學生,請求出該校約有多少名學生喜愛打乒乓球.
(4)在抽查的名學生中,有小薇、小燕、小紅、小梅等名學生喜歡羽毛球活動,學校打算從小薇、小燕、小紅、小梅這名女生中,選取名參加全市中學生女子羽毛球比賽,請用列表法或畫樹狀圖法,求同時選中小紅、小燕的概率.(解答過程中,可將小薇、小燕、小紅、小梅分別用字母、、、代表)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c的部分圖象,A(1,0),B(0,3).
(1)求拋物線的解析式;
(2)若拋物線與x軸的另一個交點是C點,求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】跳跳一家外出自駕游,出發(fā)時油箱里還剩有汽油30升,已知跳跳家的汽車每百千米的平均油耗為12升,設油箱里剩下的油量為y(單位:升),汽車行駛的路程為x(單位:千米).
(1)求y關于x的函數表達式;
(2)若跳跳家的汽車油箱中的油量低于5升時,儀表盤會亮起黃燈警報. 要使郵箱中的存油量不低于5升,跳跳爸爸至多能夠行駛多少千米就要進加油站加油?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,,,.點從點出發(fā),以每秒2個單位長度的速度沿邊向點運動.過點作交折線于點,以為邊在右側做正方形.設正方形與重疊部分圖形的面積為,點的運動時間為秒().
(1)當點在邊上時,正方形的邊長為______(用含的代數式表示).
(2)當點落在邊上時,求的值.
(3)當點在邊上時,求與之間的函數關系式.
(4)作射線交邊于點,連結.當時,直接寫出的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com