【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的對稱軸為直線x=﹣1,下列結(jié)論正確的有_____(填序號).
①若圖象過點(﹣3,y1)、(2,y2),則y1<y2;
②ac<0;
③2a﹣b=0;
④b2﹣4ac<0.
【答案】①②③
【解析】
①根據(jù)拋物線的對稱軸找到(﹣3,y1)的對稱點(1,y1),再與(2,y2)根據(jù)函數(shù)的增減性進行比較;②由拋物線的開口方向及與y軸的交點位置,即可得出a>0、c<0,進而可得出ac<0,結(jié)論②正確;③由-=-1可得出2a-b=0,結(jié)論③正確;④由拋物線與x軸有兩個交點,結(jié)合根的判別式可得出△=b2-4ac>0,結(jié)論④錯誤.綜上即可得出結(jié)論.
解:①∵拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=-1,
∴(﹣3,y1)的對稱點是(1,y1),
∵拋物線的開口向上,
∴對稱軸右側(cè)y隨x的增大而增大,
∴1<2,則y1<y2,
故①正確;
②∵拋物線的開口向上,
∴a>0,
∵拋物線與y軸交于y軸的負半軸,
∴c<0,
∴ac<0,
故②正確;
③∵拋物線的對稱軸是x=-1,
∴-=-1,
∴b=2a,
∴2a-b=0,
故③正確;
④∵拋物線與x軸有兩個交點,
∴△=b2-4ac>0,
故④錯誤.
故答案為:①②③.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在路燈下,小明的身高如圖中線段AB所示,他在地面上的影子如圖中線段AC所示,小亮的身高如圖中線段FG所示,路燈燈泡在線段DE上.
(1)請你確定燈泡所在的位置,并畫出小亮在燈光下形成的影子.
(2)如果小明的身高AB=1.6m,他的影子長AC=1.4m,且他到路燈的距離AD=2.1m,求燈泡的高.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)交軸于點,交軸于點,且與反比例函數(shù)的圖象交于,兩點.
(1)分別求出一次函數(shù)與反比例函數(shù)的表達式;
(2)過點作軸于點,過點作軸于點,求四邊形的面積;
(3)當時,的取值范圍是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為支援災區(qū),某校愛心活動小組準備用籌集的資金購買A、B兩種型號的學習用品共1000件.已知B型學習用品的單價比A型學習用品的單價多10元,用180元購買B型學習用品的件數(shù)與用120元購買A型學習用品的件數(shù)相同.
(1)求A、B兩種學習用品的單價各是多少元?
(2)若購買這批學習用品的費用不超過28000元,則最多購買B型學習用品多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面從認知、延伸、應用三個層面來研究一種幾何模型.
(1)如圖,已知點E是線段BC上一點,若∠AED=∠B=∠C.求證 △ABE∽△ECD.
(2)如圖,已知點E、F是線段BC上兩點,AE與DF交于點H,若∠AHD=∠B=∠C.
求證:△ABE∽△FCD.
(3)如圖,⊙O是等邊△ABC的外接圓,點D是上一點,連接BD并延長交AC的延長線于點E;連接CD并延長交AB的延長線于點F. 猜想BF、BC、CE三線段的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,菱形OABC的頂點A在x軸的正半軸上,頂點C的坐標為(1,).
(1)求圖象過點B的反比例函數(shù)的解析式;
(2)求圖象過點A,B的一次函數(shù)的解析式;
(3)在第一象限內(nèi),當以上所求一次函數(shù)的圖象在所求反比例函數(shù)的圖象下方時,請直接寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著綠城南寧近幾年城市建設(shè)的快速發(fā)展,對花木的需求量逐年提高.某園林專業(yè)戶計劃投資種植花卉及樹木,根據(jù)市場調(diào)查與預測,種植樹木的利潤與投資量成正比例關(guān)系,如圖(1)所示;種植花卉的利潤與投資量成二次函數(shù)關(guān)系,如圖(2)所示(注:利潤與投資量的單位:萬元)
(1)分別求出利潤與關(guān)于投資量的函數(shù)關(guān)系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,他至少獲得多少利潤?他能獲取的最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com