精英家教網 > 初中數學 > 題目詳情

【題目】如圖,一次函數軸于點,交軸于點,且與反比例函數的圖象交于,兩點.

(1)分別求出一次函數與反比例函數的表達式;

(2)過點軸于點,過點軸于點,求四邊形的面積;

(3)當時,的取值范圍是________.

【答案】(1) (2)8 (3)

【解析】

(1)利用待定系數法即可解決問題;

(2)連接CD,根據計算即可解決問題;

(3)觀察圖象,寫出一次函數的圖象在反比例函數的圖象下方的自變量的取值范圍即可.

(1)將點代入,得,∴反比例函數的表達式為

時,,則點,

將點、代入,

得:,解得,

∴一次函數表達式為

(2)連接CD.由題意F(0,3),D(0,1),C(-3,0),

.

(3)觀察圖象可知,當kx+b<時,x的取值范圍是x<-30<x<2.

故答案為x<-30<x<2.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OADB的頂點A,B的坐標分別為A(﹣6,0),B(0,4).過點C(﹣6,1)的雙曲線y=(k≠0)與矩形OADB的邊BD交于點E.

(1)填空:OA=  ,k=   ,點E的坐標為   

(2)當1≤t≤6時,經過點M(t﹣1,﹣t2+5t﹣)與點N(﹣t﹣3,﹣t2+3t﹣)的直線交y軸于點F,點P是過M,N兩點的拋物線y=﹣x2+bx+c的頂點.

①當點P在雙曲線y=上時,求證:直線MN與雙曲線y=沒有公共點;

②當拋物線y=﹣x2+bx+c與矩形OADB有且只有三個公共點,求t的值;

③當點F和點P隨著t的變化同時向上運動時,求t的取值范圍,并求在運動過程中直線MN在四邊形OAEB中掃過的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知ABC為等邊三角形,P是直線AC上一點,ADBPD,以AD為邊作等邊ADE(D,E在直線AC異側).

(1)如圖1,若點P在邊AC上,連CD,且∠BDC=150°,則= ;(直接寫結果)

(2)如圖2,若點PAC延長線上,DEBCF求證:BF=CF;

(3)在圖2中,若∠PBC=15°,AB=,請直接寫出CP的長

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC 中,∠C90°AB10cm,BC6cm,若動點 P 從點 C開始,按 C→A→B→C 的路徑運動,且速度為每秒 1cm,設出發(fā)的時間為 t 秒.

1)出發(fā) 2 秒后,求△ABP 的周長.

2)當 t 為幾秒時,BP 平分∠ABC?

3)另有一點 Q,從點 C 開始,按 C→B→A→C 的路徑運動,且速度為每秒 2cm,若 PQ 兩點同時出發(fā),當 P、Q 中有一點到達終點時,另一點也停止運動.當 t 為何值時,直 PQ △ABC 的周長分成相等的兩部分?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一個不透明的口袋中裝有4個完全相同的小球,分別標有數字1,2,34,另外有一個可以自由旋轉的圓盤,被分成面積相等的3個扇形區(qū)域,分別標有數字12,3(如圖所示).

1)從口袋中摸出一個小球,所摸球上的數字大于2的概率為 ;

2)小龍和小東想通過游戲來決定誰代表學校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個小球,另一人轉動圓盤,如果所摸球上的數字與圓盤上轉出數字之和小于5,那么小龍去;否則小東去.你認為游戲公平嗎?請用樹狀圖或列表法說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A是反比例函數在第二象限內圖象上一點,點B是反比例函數在第一象限內圖象上一點,直線ABy軸交于點C,且AC=BC,連接OA、OB,則AOB的面積是( 。

A. 2 B. 2.5 C. 3 D. 3.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=k1x(x≥0)與雙曲線y=(x>0)相交于點P(2,4).已知點A(4,0),B(0,3),連接AB,將RtAOB沿OP方向平移,使點O移動到點P,得到A'PB'.過點A'A'Cy軸交雙曲線于點C.

(1)求k1k2的值;

(2)求直線PC的表達式;

(3)直接寫出線段AB掃過的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,二次函數yax2+bx+ca0)的圖象的對稱軸為直線x=﹣1,下列結論正確的有_____(填序號).

若圖象過點(﹣3,y1)、(2,y2),則y1y2;

ac0;

③2ab0;

b24ac0

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形OABC是平行四邊形,以O為圓心,OA為半徑的圓交AB于點D,延長AO交⊙O于點E,連接CD、CE,若CE是⊙O的切線.

(1)求證:CD是⊙O的切線;

(2)若⊙O的半徑為4,OC=7,求BD的長.

查看答案和解析>>

同步練習冊答案