A. | 3 | B. | 4 | C. | 5 | D. | 6 |
分析 利用平行四邊形的性質(zhì)得出AD=BC,AD∥BC,進(jìn)而得出AF$\stackrel{∥}{=}$BE,DF$\stackrel{∥}{=}$EC,AF$\stackrel{∥}{=}$EC,求出答案.
解答 解:∵點E、F分別為邊BC,AD的中點,
∴AF=DF,BE=EC,
∵四邊形ABCD是平行四邊形,
∴AD=BC,AD∥BC,
∴AF=DF=BE=EC,
∴AF$\stackrel{∥}{=}$BE,DF$\stackrel{∥}{=}$EC,AF$\stackrel{∥}{=}$EC,
∴四邊形ABEF是平行四邊形,四邊形AECF是平行四邊形,四邊形FECD是平行四邊形,
則圖中共有平行四邊形的個數(shù)是4個.
故選:B.
點評 此題主要考查了平行四邊形的判定與性質(zhì),正確得出AF=DF=BE=EC是解題關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | DC=BC | B. | AC⊥BD | C. | AB=BD | D. | ∠ADB=∠CDB |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{AF}{AB}$=$\frac{AE}{DE}$ | B. | $\frac{AF}{CD}$=$\frac{AE}{BC}$ | C. | $\frac{AF}{AB}=\frac{EF}{CE}$ | D. | $\frac{DE}{AE}=\frac{CE}{EF}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 1.5 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | y1>y2>y3 | B. | y2>y1>y3 | C. | y3>y1>y2 | D. | y3>y2>y1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com