(1)探究新知:如圖1,已知△ABC與△ABD的面積相等, 試判斷AB與CD的位置關系,并說明理由.

(2)結(jié)論應用:如圖2,點M,N在反比例函數(shù)(k>0)的圖象上,過點M作ME⊥y軸,過點N作NF⊥x軸,垂足分別為E,F(xiàn). 試證明:MN∥EF.  

(3)變式探究:如圖3,點M,N在反比例函數(shù)(k>0)的圖象上,過點M作ME⊥y軸,過點N作NF⊥x軸,過點M作MG⊥x軸,過點N作NH⊥y軸,垂足分別為E、F、G、H. 試證明:EF ∥GH.

 

【答案】

(1)AB∥CD,理由見解析(2)、(3)證明見解析

【解析】(1)證明:分別過點C,D,作CG⊥AB,DH⊥AB,垂足為G,H,則∠CGA=∠DHB=90°.

∴ CG∥DH.   

∵ △ABC與△ABD的面積相等,  ∴ CG=DH.  

∴ 四邊形CGHD為平行四邊形.  ∴ AB∥CD.(4分 )

(2)①證明:連結(jié)MF,NE.

設點M的坐標為(x1,y1),點N的坐標為(x2,y2).

∵ 點M,N在反比例函數(shù)(k>0)的圖象上,

,.  

∵ ME⊥y軸,NF⊥x軸,  ∴ OE=y(tǒng)1,OF=x2. ∴ SEFM, 

SEFN.    ∴SEFM =SEFN           

由(1)中的結(jié)論可知:MN∥EF.  (8分)

(3) 法一:連接FM、EN、MN,同(2)可證MN∥EF,同法可證GH∥MN,故EF ∥GH.

法二:直接利用OE·OG=OF·OH證△OEF∽△OHG(具體過程略)(12分)

(1)分別過點C、D作CG⊥AB、DH⊥AB,垂足為G、H,根據(jù)三角形的面積求出CG=DH,推出平行四邊形CGDH即可

(2)證△EMF和△NEF的面積相等,根據(jù)(1)即可推出答案

(3)利用OE·OG=OF·OH證△OEF∽△OHG,即可得出結(jié)論

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(1)探究新知:如圖1,已知△ABC與△ABD的面積相等,試判斷AB與CD的位置關系,并說明理由.
(2)結(jié)論應用:
①如圖2,點M,N在反比例函數(shù)y=
kx
(k>0)的圖象上,過點M作ME⊥y軸,過點N作NF⊥x軸,垂足分別為E,F(xiàn),試證明:MN∥EF;
②若①中的其他條件不變,只改變點M,N的位置如圖3所示,請判斷MN與EF是否平行.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)探究新知:
如圖1,已知△ABC與△ABD的面積相等,試判斷AB與CD的位置關系,并說明理由.
精英家教網(wǎng)
(2)結(jié)論應用:
①如圖2,點M,N在反比例函數(shù)y=
kx
(k>0)的圖象上,過點M作ME⊥y軸,過點N作NF⊥x軸,垂足分別為E,F(xiàn).
試證明:MN∥EF.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)探究新知:
①如圖1,已知AD∥BC,AD=BC,點M,N是直線CD上任意兩點.
求證:△ABM與△ABN的面積相等.
②如圖2,已知AD∥BE,AD=BE,AB∥CD∥EF,點M是直線CD上任一點,點G是直線EF上任一點,試判斷△ABM與△ABG的面積是否相等,并說明理由.
(2)結(jié)論應用:
如圖3,拋物線y=ax2+bx+c的頂點為C(1,4),交x軸于點A(3,0),交y軸于點D,試探究在拋物線y=ax2+bx+c上是否存在除點C以外的點E,使得△ADE與△ACD的面積相等?若存在,請求出此時點E的坐標;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•河北一模)(1)探究新知:
①如圖1,已知AD∥BC,AD=BC,點M,N是直線CD上任意兩點.則S△ABM
=
=
S△ABN(填“<”,“=”,“>”).
②如圖2,已知AD∥BE,AD=BE,AB∥CD∥EF,點M是直線CD上任一點,點G是直線EF上任一點.試判斷△ABM與△ABG的面積是否相等,并說明理由.
(2)結(jié)論應用:
如圖3,拋物線y=ax2+bx+c的頂點為C(1,4),交x軸于點A(3,0),交y軸于點D.試探究在拋物線y=ax2+bx+c上是否存在除點C以外的點E,使得△ADE與△ACD的面積相等?若存在,請求出此時點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)探究新知:如圖1,已知△ABC與△ABD的面積相等,試判斷AB與CD的位置關系,并說明理由.
(2)結(jié)論應用:如圖2,點M,N在反比例函數(shù)y=
k
x
(k>0)的圖象上,過點M作ME⊥y軸,過點N作NF⊥x軸,垂足分別為E,F(xiàn). 試證明:MN∥EF.
(3)變式探究:如圖3,點M,N在反比例函數(shù)y=
k
x
(k>0)的圖象上,過點M作ME⊥y軸,過點N作NF⊥x軸,過點M作MG⊥x軸,過點N作NH⊥y軸,垂足分別為E、F、G、H.試證明:EF∥GH.

查看答案和解析>>

同步練習冊答案