【題目】如圖,在平面直角坐標(biāo)系中,O為原點,直線y=2x﹣1,與y軸交于點A,與直線y=﹣x交于點B,點B關(guān)于原點的對稱點為點C

1)求過A,BC三點的拋物線的解析式;

2P為拋物線上一點,它關(guān)于原點的對稱點為Q,當(dāng)四邊形PBQC為菱形時,求點P的坐標(biāo).

【答案】(1)拋物線解析式為y=x2-x-1;(2)P點坐標(biāo)為(1-,1-)或(1+,1+).

【解析】試題分析:本題主要考查二次函數(shù)的應(yīng)用。

1)由兩直線解析式求出B點坐標(biāo),由題意B、C關(guān)于原點對稱求出C坐標(biāo),再由y=2x-1y軸交于點A,求出點A的坐標(biāo),即可用待定系數(shù)法確定二次函數(shù)解析式。

2先由點P在拋物線上,設(shè)出點P的坐標(biāo)。根據(jù)菱形的性質(zhì)可知對角線垂直,則可得PQ所在直線的解析式,把點P代入該直線解析式可得點P的坐標(biāo)。

解:(1)聯(lián)立兩直線解析式可得,解得
∴B點坐標(biāo)為(-1,1),
又C點為B點關(guān)于原點的對稱點,
∴C點坐標(biāo)為(1,-1),
∵直線y=-2x-1與y軸交于點A,
∴A點坐標(biāo)為(0,-1),
設(shè)拋物線解析式為y=ax2+bx+c,
把A、B、C三點坐標(biāo)代入可得,解得
∴拋物線解析式為y=x2-x-1;

(2)當(dāng)四邊形PBQC為菱形時,則PQ⊥BC,
∵直線BC解析式為y=-x,
∴直線PQ解析式為y=x,
聯(lián)立拋物線解析式可得,解得
∴P點坐標(biāo)為(1-,1-)或(1+,1+).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一節(jié)數(shù)學(xué)課上,老師布置了一個任務(wù):

已知,如圖1,在中,,用尺規(guī)作圖作矩形

同學(xué)們開動腦筋,想出了很多辦法,其中小亮作了圖2,他向同學(xué)們分享了作法:

①分別以點、為圓心,大于長為半徑畫弧,兩弧分別交于點,連接于點

②作射線,在上取點,使;

③連接,

則四邊形就是所求作的矩形.

老師說:“小亮的作法正確.”

寫出小亮的作圖依據(jù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售甲、乙兩種商品,現(xiàn)有如下信息:

請結(jié)合以上信息,解答下列問題:

(1)求甲、乙兩種商品的進(jìn)貨單價;

(2)已知甲、乙兩種商品的零售單價分別為2元、3元,該商店平均每天賣出甲商品500件和乙商品1300件,經(jīng)市場調(diào)查發(fā)現(xiàn),甲種商品零售單價每降0.1元,甲種商品每天可多銷售100件,商店決定把甲種商品的零售單價下降m(m>0)元,在不考慮其他因素的條件下,求當(dāng)m為何值時,商店每天銷售甲、乙兩種商品獲取的總利潤為1800元(注:單件利潤=零售單價﹣進(jìn)貨單價)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3,E,F 分別是AB,BC邊上的點,且∠EDF=45°.△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.

1)求證:EF=FM;

2)當(dāng)AE=1時,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市推行節(jié)能減排,低碳經(jīng)濟(jì)政策后,某環(huán)保節(jié)能設(shè)備生產(chǎn)企業(yè)的產(chǎn)品供不應(yīng)求.若該企業(yè)的某種環(huán)保設(shè)備每月的產(chǎn)量保持在一定的范圍,每套產(chǎn)品的生產(chǎn)成本不高于50萬元,每套產(chǎn)品的售價不低于90萬元.已知這種設(shè)備的月產(chǎn)量x(套)與每套的售價y1(萬元)之間滿足關(guān)系式y1=170﹣2x,月產(chǎn)量x(套)與生產(chǎn)總成本y2(萬元)存在如圖所示的函數(shù)關(guān)系.

1)直接寫出y2x之間的函數(shù)關(guān)系式;

2)求月產(chǎn)量x的范圍;

3)當(dāng)月產(chǎn)量x(套)為多少時,這種設(shè)備的利潤為1950萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了開設(shè)武術(shù)、舞蹈、剪紙等三項活動課程以提升學(xué)生的體藝素養(yǎng),隨機(jī)抽取了部分學(xué)生對這三項活動的興趣情況進(jìn)行了調(diào)查(每人從中只能選一項),并將調(diào)查結(jié)果繪制成如圖兩幅統(tǒng)計圖,請你結(jié)合圖中信息解答問題.

1)將條形統(tǒng)計圖補充完整;

2)本次抽樣調(diào)查的樣本容量是 ;

3)已知該校有1200名學(xué)生,請你根據(jù)樣本估計全校學(xué)生中喜歡剪紙的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,D為⊙O上一點,DE是⊙O的切線,DE⊥AC交AC的延長線于點E,FB是⊙O的切線交AD的延長線于點F.

(1)求證:AD平分∠BAC;

(2)若DE=3,⊙O的半徑為5,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn):如圖1,如果△ACB和△CDE均為等邊三角形,點A、D、E在同一直線上,連接BE.ADBE的數(shù)量關(guān)系為   ;AEB的度數(shù)為   .

(2)拓展探究:如圖2,如果△ACB和△CDE均為等腰三角形,∠ACB=DCE=90°,點A、D、E在同一直線上,連接BE,判斷線段AEBE的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在5次打靶測試中命中的環(huán)數(shù)如下:

甲:8,87,89

乙:5,97,109

1)填寫下表:

平均數(shù)

眾數(shù)

中位數(shù)

方差


8


8

0.4



9


3.2

2)教練根據(jù)這5次成績,選擇甲參加射擊比賽,教練的理由是什么?

3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差 .(填變大、變小不變).

查看答案和解析>>

同步練習(xí)冊答案