【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點,與y軸交于點C,點B坐標(﹣1,0),下面的四個結論:①OA=3;②a+b+c<0;③ac>0;④b2﹣4ac>0.其中正確的結論是(  )

A.①④
B.①③
C.②④
D.①②

【答案】A
【解析】解:∵點B坐標(﹣1,0),對稱軸是直線x=1,
∴A的坐標是(3,0),
∴OA=3,∴①正確;
∵由圖象可知:當x=1時,y>0,
∴把x=1代入二次函數(shù)的解析式得:y=a+b+c>0,∴②錯誤;
∵拋物線的開口向下,與y軸的交點在y軸的正半軸上,
∴a<0,c>0,
∴ac<0,∴③錯誤;
∵拋物線與x軸有兩個交點,
∴b2﹣4ac>0,∴④正確;
故選A.
【考點精析】解答此題的關鍵在于理解二次函數(shù)圖象以及系數(shù)a、b、c的關系的相關知識,掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關:對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:一張矩形紙片,剪下一個正方形,剩下一個矩形,稱為第一次操作;在剩下的矩形紙片中再剪下一個正方形,剩下一個矩形,稱為第二次操作;…;若在第n次操作后,剩下的矩形為正方形,則稱原矩形為n階奇異矩形.如圖1,矩形ABCD中,若AB=3,BC=9,則稱矩形ABCD為2階奇異矩形.

(1)判斷與操作:

如圖2,矩形ABCD長為7,寬為3,它是奇異矩形嗎?如果是,請寫出它是幾階奇異矩形,并在圖中畫出裁剪線;如果不是,請說明理由.

(2)探究與計算:

已知矩形ABCD的一邊長為20,另一邊長為a(a<20),且它是3階奇異矩形,請畫出矩形ABCD及裁剪線的示意圖,并在圖的下方寫出a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BECF,BADC,下面給出四個結論:BECF;②ABDC;③;

④四邊形ABCD是矩形.其中說法正確的有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,DBC邊上的一點,EAD的中點,A點作BC的平行線交CE的延長線于點F,AF=BD,連接BF

(1)求證BD=CD

(2)ABC滿足什么條件時,四邊形AFBD是矩形?并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)﹣20+(﹣14)﹣(﹣18)﹣13 (2)27-18+43-32

(3)(+)﹣(﹣)﹣|﹣3| (4)

(5)﹣64÷3×; (6)-22++77+0

(7) (8)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E,F(xiàn),G,H分別是邊AB,BC,CD,DA的中點.

(1)判斷四邊形EFGH的形狀,并證明你的結論;

(2)當BD,AC滿足什么條件時,四邊形EFGH是正方形.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,下列結論中不正確的是(  )

A. AB=BC時,它是菱形 B. ACBD時,它是菱形

C. 當∠ABC=90°時,它是矩形 D. AC=BD時,它是正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,每個小立方體的棱長為1,按如圖所示的視線方向看,圖1中共有11立方體,其中1個看得見,0個看不見;圖2中共有8個立方體,其中7個看得見,1個看不見;圖3中共有27個小立方體,其中19個看得見,8個看不見;,則第11個圖形中,其中看得見的小立方體個數(shù)是(  )

A. 271 B. 272 C. 331 D. 332

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應用題

四川的災情牽動全國人民的心,某市A、B兩個蔬菜基地得知四川C、D兩個災民安置點分別急蔬菜240噸和260噸的消息后,決定調運蔬菜支援災區(qū)。已知A蔬菜基地有蔬菜200噸,B蔬菜基地有蔬菜300噸,現(xiàn)將這些蔬菜全部調往C、D兩個災民安置點。從A地運往C、D兩處的費用分別為每噸20元和25元,從B地運往C、D兩處的費用分別為每噸15元和18元。設從B地運往C處的蔬菜為噸。

(1)請?zhí)顚懴卤,并求兩個蔬菜基地調運蔬菜的運費相等時的值?

C

D

總計

A

200

B

300

總計

240

260

500

(2)已知總運費最小的調運費用是9280元,請你提交具體的調運方案.

查看答案和解析>>

同步練習冊答案