【題目】如圖,將一張矩形紙片ABCD沿直線MN折疊,使點C落在點A處,點D落在點E處,直線MNBC于點M,交AD于點N

1)求證:CM=CN;

2)若△CMN的面積與△CDN的面積比為31,求的值.

【答案】(1)證明見解析;(2)

【解析】

1)由折疊的性質(zhì)可得:∠ANM=∠CNM,由四邊形ABCD是矩形,可得∠ANM=∠CMN,則可證得∠CMN=∠CNM,繼而可得CM=CN

2)首先過點NNH⊥BC于點H,由△CMN的面積與△CDN的面積比為31,易得MC=3ND=3HC,然后設(shè)DN=x,由勾股定理,可求得MN的長,繼而求得答案.

解:(1)證明:由折疊的性質(zhì)可得:∠ANM=∠CNM,

四邊形ABCD是矩形,∴AD∥BC∴∠ANM=∠CMN

∴∠CMN=∠CNM∴CM=CN

2)過點NNH⊥BC于點H,則四邊形NHCD是矩形.

∴HC=DN,NH=DC

∵△CMN的面積與△CDN的面積比為31,

∴MC=3ND=3HC∴MH=2HC

設(shè)DN=x,則HC=x,MH=2x,∴CM=3x=CN

Rt△CDN中,,

∴HN=

Rt△MNH中,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以矩形ABCD的邊CD為直徑作⊙O,點EAB 的中點,連接CE交⊙O于點F,連接AF并延長交BC于點H

1)若連接AO,試判斷四邊形AECO的形狀,并說明理由;

2)求證:AH是⊙O的切線;

3AB6,CH2,則AH的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標(biāo)為(1,0),頂點A的坐標(biāo)為(02),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應(yīng)點C′的坐標(biāo)為( 。

A.,0B.2,0C.,0D.3,0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】倡導(dǎo)健康生活推進全民健身,某社區(qū)去年購進A,B兩種健身器材若干件,經(jīng)了解,B種健身器材的單價是A種健身器材的15倍,用7200元購買A種健身器材比用5400元購買B種健身器材多10件.

1A,B兩種健身器材的單價分別是多少元?

2)若今年兩種健身器材的單價和去年保持不變,該社區(qū)計劃再購進A,B兩種健身器材共50件,且費用不超過21000元,請問:A種健身器材至少要購買多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+3經(jīng)過A(3,0),B(1,0)兩點(如圖1),頂點為M.

(1)a、b的值;

(2)設(shè)拋物線與y軸的交點為Q(如圖1),直線y=2x+9與直線OM交于點D. 現(xiàn)將拋物線平移,保持頂點在直線OD.當(dāng)拋物線的頂點平移到D點時,Q點移至N點,求拋物線上的兩點M、Q間所夾的曲線MQ掃過的區(qū)域的面積;

(3)設(shè)直線y=2x+9y軸交于點C,與直線OM交于點D(如圖2).現(xiàn)將拋物線平移,保持頂點在直線OD.若平移的拋物線與射線CD(含端點C)沒有公共點時,試探求其頂點的橫坐標(biāo)h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,點C在優(yōu)弧上,將沿BC折疊后剛好經(jīng)過AB的中點D,連接AC,CD.則下列結(jié)論中錯誤的是(  )

ACCD;②ADBD;③+;④CD平分∠ACB

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點C在線段AB上,(點C不與A、B重合),分別以AC、BC為邊在AB同側(cè)作等邊三角形ACD和等邊三角形BCE,連接AE、BD交于點P

(觀察猜想)

AEBD的數(shù)量關(guān)系是   ;

②∠APD的度數(shù)為   

(數(shù)學(xué)思考)

如圖2,當(dāng)點C在線段AB外時,(1)中的結(jié)論①、②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明;

(拓展應(yīng)用)

如圖3,點E為四邊形ABCD內(nèi)一點,且滿足∠AED=∠BEC90°AEDE,BECE,對角線AC、BD交于點P,AC10,則四邊形ABCD的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖由長為a,寬為b的矩形、(2m+1)個長為4,寬為1的小矩形(為正整數(shù))和若干個小圓組成,其中小圓的直徑與小矩形的寬相等.

1)當(dāng)m1時,a   ,b   

2)當(dāng)a24時,求b的值;

3a的值能否等于30?請通過計算說明理由;

4)直接寫出ab的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+2與反比例函數(shù)y的圖象在第二象限內(nèi)交于點A,過點AABx軸于點B,OB1

1)求該反比例函數(shù)的表達(dá)式;

2)若點P是該反比例函數(shù)圖象上一點,且△PAB的面積為3,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案