【題目】某市射擊隊為從甲、乙兩名運動員中選拔一人參加省比賽,對他們進行了六次測試,測試成績?nèi)缦卤?/span>單位:環(huán)

1

2

3

4

5

6

10

9

8

8

10

9

10

10

8

10

7

9

根據(jù)表格中的數(shù)據(jù),可計算出甲、乙兩人的平均成績都是9環(huán).

1)分別計算甲、乙六次測試成績的方差;

2)根據(jù)數(shù)據(jù)分析的知識,你認為選______名隊員參賽.

【答案】1)甲、乙六次測試成績的方差分別是,;(2)甲

【解析】

1)根據(jù)方差的定義,利用方差公式分別求出甲、乙的方差即可;

2)根據(jù)平均數(shù)相同,利用(1)所求方差比較,方差小的成績穩(wěn)定,即可得答案.

1)甲、乙六次測試成績的方差分別是:

,

,

2)推薦甲參加全國比賽更合適,理由如下:

∵兩人的平均成績相等,

∴兩人實力相當(dāng);

∵甲的六次測試成績的方差比乙小,

∴甲發(fā)揮較為穩(wěn)定,

∴推薦甲參加比賽更合適.

故答案為:甲

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB8,BC4,將矩形沿AC折疊,點D落在點D′處,則重疊部分△AFC的面積為(

A.6B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在RtABC中,C=90°,BC=1,AC=,點D是斜邊AB的中點,點E是邊AC上一點,則DE+BE的最小值為( 。

A. 2

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線ABx軸交于點A1,0),與y軸交于點B0,-2).

1)求直線AB的表達式;

2)若直線AB上有一動點C,且,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC≠BC,點M是邊AC上的動點.過點M作MN∥AB交BC于N,現(xiàn)將△MNC沿MN折疊,得到△MNP.若點P在AB上.則以MN為直徑的圓與直線AB的位置關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠A=∠C=90°,BE平分∠ABCDF平分∠ADC,則BEDF有何位置關(guān)系?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.

(1)求證:PA是⊙O的切線;
(2)若AB=4+ ,BC=2 ,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足為E.
(1)求證:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.

(1)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明,若不成立,請說明理由;
(2)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長BD交CF于點H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3 時,求線段DH的長.

查看答案和解析>>

同步練習(xí)冊答案