【題目】元旦期間某商店進(jìn)行促銷活動(dòng),活動(dòng)方式有如下兩種:

方式一:每滿200元減50元;

方式二:若標(biāo)價(jià)不超過400元時(shí),打8折;若標(biāo)價(jià)超過400元,則不超過400元的部分打8折,超出400元的部分打6

設(shè)某一商品的標(biāo)價(jià)為元:

1)當(dāng)元,按方式二應(yīng)付多少錢

2)當(dāng)時(shí),取何值兩種方式的優(yōu)惠相同

【答案】1)按方式二應(yīng)付416元錢;(2)當(dāng)x=250450元時(shí),兩種方式的優(yōu)惠相同

【解析】

1)根據(jù)方式二的促銷方案,計(jì)算即可;

2)根據(jù)x的值,分類討論,分別列出方程求出x即可.

解:(1)∵560400

∴按方式二應(yīng)付400×80%+(560400)×60%=416(元)

答:按方式二應(yīng)付416元錢.

2)①若

根據(jù)題意可知:方式一只減了1個(gè)50元,

x50=80%x

解得:x=250;

②若

根據(jù)題意可知:方式一減了2個(gè)50元,

x50×2=400×80%60%x400

解得:x=450

答:當(dāng)x=250450元時(shí),兩種方式的優(yōu)惠相同.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)問題:計(jì)算(其中m,n都是正整數(shù),且m2,n1).

探究問題:為解決上面的數(shù)學(xué)問題,我們運(yùn)用數(shù)形結(jié)合的思想方法,通過不斷地分割一個(gè)面積為1的正方形,把數(shù)量關(guān)系和幾何圖形巧妙地結(jié)合起來,并采取一般問題特殊化的策略來進(jìn)行探究.

探究一:計(jì)算

1次分割,把正方形的面積二等分,其中陰影部分的面積為;

2次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,陰影部分的面積之和為+;

3次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,…;

n次分割,把上次分割圖中空白部分的面積最后二等分,所有陰影部分的面積之和為++++,最后空白部分的面積是

根據(jù)第n次分割圖可得等式: ++++=1﹣

探究二:計(jì)算++++

1次分割,把正方形的面積三等分,其中陰影部分的面積為

2次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,陰影部分的面積之和為+;

3次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,…;

n次分割,把上次分割圖中空白部分的面積最后三等分,所有陰影部分的面積之和為++++,最后空白部分的面積是

根據(jù)第n次分割圖可得等式: ++++=1﹣

兩邊同除以2,得++++=

探究三:計(jì)算++++

(仿照上述方法,只畫出第n次分割圖,在圖上標(biāo)注陰影部分面積,并寫出探究過程)

解決問題:計(jì)算++++

(只需畫出第n次分割圖,在圖上標(biāo)注陰影部分面積,并完成以下填空)

根據(jù)第n次分割圖可得等式:_________,

所以, ++++=________

拓廣應(yīng)用:計(jì)算 ++++

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)活動(dòng)課上,某活動(dòng)小組用棋子擺出了下列圖形:

……

1個(gè)圖形 2個(gè)圖形 3個(gè)圖形 4個(gè)圖形

1)探索新知:

①第個(gè)圖形需要_________枚棋子;②第個(gè)圖形需要__________枚棋子.

2)思維拓展:

小明說:“我要用枚棋子擺出一個(gè)符合以上規(guī)律的圖形”,你認(rèn)為小明能擺出嗎?如果能擺出,請(qǐng)問擺出的是第幾個(gè)圖形;如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知為直線上一點(diǎn),互補(bǔ),、分別是、的平分線,.

1相等嗎?請(qǐng)說明理由;

2)求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】邊長為a的等邊三角形,記為第1個(gè)等邊三角形,取其各邊的三等分點(diǎn),順次連接得到一個(gè)正六邊形,記為第1個(gè)正六邊形,取這個(gè)正六邊形不相鄰的三邊中點(diǎn),順次連接又得到一個(gè)等邊三角形,記為第2個(gè)等邊三角形,取其各邊的三等分點(diǎn),順次連接又得到一個(gè)正六邊形,記為第2個(gè)正六邊形(如圖),,按此方式依次操作,則第6個(gè)正六邊形的邊長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年“雙十一”購物活動(dòng),商家都會(huì)利用這個(gè)契機(jī)進(jìn)行打折滿減的促銷活動(dòng).某商家平時(shí)的優(yōu)惠措施是按所有商品標(biāo)價(jià)打七折:“雙十一”活動(dòng)期間的優(yōu)惠措施是:購買的所有商品先按標(biāo)價(jià)總和打七五折,再享受折后每滿元減元的優(yōu)惠.如標(biāo)價(jià)為元的商品,折后為元,再減元,即實(shí)付:(元).

1)該商店標(biāo)價(jià)總和為元的商品,在“雙十一”購買,最后實(shí)際支付只需多少元?

2)小明媽媽在這次活動(dòng)中打算購買某件商品,打折滿減后,應(yīng)付金額是元,求該商品的標(biāo)價(jià).

3)在(2)的條件下,若該商家出售的商品標(biāo)價(jià)均為整數(shù),小明通過計(jì)算后告訴媽媽:通過湊單(再購買少量商品)實(shí)際支付金額只需再多付   元,就可獲得最大優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校食堂廚房的桌子上整齊地?cái)[放著若干相同規(guī)格的碟子,碟子的個(gè)數(shù)與碟子的高度的關(guān)系如下表:

碟子的個(gè)數(shù)

碟子的高度(單位:cm

1

2

2

2+1.5

3

2+3

4

2+4.5

1)當(dāng)桌子上放有x(個(gè))碟子時(shí),請(qǐng)寫出此時(shí)碟子的高度(用含x的式子表示);

2)分別從三個(gè)方向上看,其三視圖如上圖所示,廚房師傅想把它們整齊疊成一摞,求疊成一摞后的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上,把表示數(shù)1的點(diǎn)稱為基準(zhǔn)點(diǎn),記作點(diǎn).對(duì)于兩個(gè)不同的點(diǎn)MN,若點(diǎn)M、點(diǎn)N到點(diǎn)的距離相等,則稱點(diǎn)M與點(diǎn)N互為基準(zhǔn)變換點(diǎn).例如:圖1,點(diǎn)M表示數(shù)-1,點(diǎn)N表示數(shù)3,它們與基準(zhǔn)點(diǎn)的距離都是2個(gè)單位長度,點(diǎn)M與點(diǎn)N互為基準(zhǔn)變換點(diǎn).

1)已知點(diǎn)A表示數(shù)a,點(diǎn)B表示數(shù)b,點(diǎn)A與點(diǎn)B互為基準(zhǔn)變換點(diǎn).

①若a=0,則b=_________;若a=4,則b=_________

②用含a的式子表示b,則b=____________

2)對(duì)點(diǎn)A進(jìn)行如下操作:先把點(diǎn)A表示的數(shù)乘以2.5,再把所得數(shù)表示的點(diǎn)沿著數(shù)軸向左移動(dòng)3個(gè)單位長度得到點(diǎn)B 若點(diǎn)A與點(diǎn)B互為基準(zhǔn)變換點(diǎn),則點(diǎn)A表示的數(shù)是___________;

(3)點(diǎn)P在點(diǎn)Q的左邊,點(diǎn)P與點(diǎn)Q之間的距離為8個(gè)單位長度.對(duì)P、Q兩點(diǎn)做如下操作:點(diǎn)P沿?cái)?shù)軸向右移動(dòng)k(k>0)個(gè)單位長度得到,的基準(zhǔn)變換點(diǎn),點(diǎn)沿?cái)?shù)軸向右移動(dòng)k個(gè)單位長度得到,的基準(zhǔn)變換點(diǎn),…,依此順序不斷地重復(fù),得到,,…,為Q的基準(zhǔn)變換點(diǎn),將數(shù)軸沿原點(diǎn)對(duì)折后的落點(diǎn)為,的基準(zhǔn)變換點(diǎn),將數(shù)軸沿原點(diǎn)對(duì)折后的落點(diǎn)為,…,依此順序不斷地重復(fù),得到,,…,.若無論k為何值,兩點(diǎn)間的距離都是4,則n=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在一條東西向的雙軌鐵路上迎面駛來一快一慢兩列火車,快車長(單位長度)。慢車長(單位長度),設(shè)正在行駛途中的某一時(shí)刻,如圖,以兩車之間的某點(diǎn)為原點(diǎn),取向右方向?yàn)檎较虍嫈?shù)軸,此時(shí)快車在數(shù)軸上表示的數(shù)是,慢車頭在數(shù)軸上表示的數(shù)是,若快車個(gè)單位長度/秒的速度向右勻速繼續(xù)行駛,同時(shí)慢車個(gè)單位長度/秒的速度向左勻速繼續(xù)行駛,且互為相反數(shù).

(1)求此時(shí)刻快車頭與慢車頭之間相距多少單位長度?

(2)從此時(shí)刻開始算起,問再行駛多少秒兩列火車行駛到車頭相距個(gè)單位長度?

(3)此時(shí)在快車上有一位愛到腦筋的七年級(jí)學(xué)生乘客,他發(fā)現(xiàn)行駛中有一段時(shí)間,他的位置到兩列火車頭、的距離和加上到兩列火車尾的距離和是一個(gè)不變的值(即為定值),你認(rèn)為學(xué)生發(fā)現(xiàn)的這一結(jié)論是否正確?若正確,求出增定值及所持續(xù)的時(shí)間;若不正確,請(qǐng)說明理由.

附加題:

查看答案和解析>>

同步練習(xí)冊(cè)答案