【題目】一座隧道的截面由拋物線和長方形的構(gòu)成,長方形的長為8米,寬為2米,隧道的最高點(diǎn)P位于AB的中央且距地面6m.
(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求拋物線解析式;
(2)如果隧道為單行道,一輛貨車高4米,寬3米,能否從隧道內(nèi)通過,說明理由.
【答案】(1) y=-(x﹣4)2+6;(2)貨車可以通過.
【解析】
(1)建立如圖所示的坐標(biāo)系,可得拋物線的頂點(diǎn)坐標(biāo)(4,6),再利用待定系數(shù)法求函數(shù)的解析式即可;(2)令y=4,解方程求得x的值,計(jì)算|x1﹣x2|的值與3比較即可解答.
解:(1)由題意可知拋物線的頂點(diǎn)坐標(biāo)(4,6),
設(shè)拋物線的方程為y=a(x﹣4)2+6,
又∵點(diǎn)A(0,2)在拋物線上,
∴2=a(0-4)2+6,
∴a=-
因此有:y=-(x﹣4)2+6.
(2)令y=4,則有4=-(x﹣4)2+6,
解得x1=4+2,x2=4﹣2,
|x1﹣x2|=4>3,
故貨車可以通過.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在四邊形 ABCD 中, AB∥CD, ACB =90°, AB=10cm, BC=8cm, OD 垂直平分 A C.點(diǎn) P 從點(diǎn) B 出發(fā),沿 BA 方向勻速運(yùn)動(dòng),速度為 1cm/s;同時(shí),點(diǎn) Q 從點(diǎn) D 出發(fā),沿 DC 方向勻速運(yùn)動(dòng),速度為 1cm/s;當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng),另一個(gè)點(diǎn)也停止運(yùn)動(dòng).過點(diǎn) P作 PE⊥AB,交 BC 于點(diǎn) E,過點(diǎn) Q 作 QF∥AC,分別交 AD, OD 于點(diǎn) F, G.連接 OP,EG.設(shè)運(yùn)動(dòng)時(shí)間為 t ( s )(0<t<5) ,解答下列問題:
(1)當(dāng) t 為何值時(shí),點(diǎn) E 在 BAC 的平分線上?
(2)設(shè)四邊形 PEGO 的面積為 S(cm2) ,求 S 與 t 的函數(shù)關(guān)系式;
(3)在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻 t ,使四邊形 PEGO 的面積最大?若存在,求出t 的值;若不存在,請(qǐng)說明理由;
(4)連接 OE, OQ,在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻 t ,使 OE⊥OQ?若存在,求出t 的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一組數(shù)據(jù):165、160、166、170、164、165,若去掉最后一個(gè)數(shù)165,下列說法正確的是( )
A. 平均數(shù)不變,方差變大B. 平均數(shù)不變,方差不變
C. 平均數(shù)不變,方差變小D. 平均數(shù)變小,方差不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點(diǎn)E、F,連接BD、DP,BD與CF相交于點(diǎn)H.給出下列結(jié)論:①BE=2AE;②△DFP~△BPH;③;④DP2=PHPC;其中正確的是( )
A. ①②③④B. ①③④C. ②③D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣5與x軸交于A(﹣1,0),B(5,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖2,CE∥x軸與拋物線相交于點(diǎn)E,點(diǎn)H是直線CE下方拋物線上的動(dòng)點(diǎn),過點(diǎn)H且與y軸平行的直線與BC,CE分別相交于點(diǎn)F,G,試探究當(dāng)點(diǎn)H運(yùn)動(dòng)到何處時(shí),四邊形CHEF的面積最大,求點(diǎn)H的坐標(biāo);
(3)若點(diǎn)K為拋物線的頂點(diǎn),點(diǎn)M(4,m)是該拋物線上的一點(diǎn),在x軸,y軸上分別找點(diǎn)P,Q,使四邊形PQKM的周長最小,求出點(diǎn)P,Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市對(duì)今年“元旦”期間銷售A、B、C三種品牌的綠色雞蛋情況進(jìn)行了統(tǒng)計(jì),并繪制如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖.根據(jù)圖中信息解答下列問題:
(1)該超市“元旦”期間共銷售 個(gè)綠色雞蛋,A品牌綠色雞蛋在扇形統(tǒng)計(jì)圖中所對(duì)應(yīng)的扇形圓心角是 度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)如果該超市的另一分店在“元旦”期間共銷售這三種品牌的綠色雞蛋1500個(gè),請(qǐng)你估計(jì)這個(gè)分店銷售的B種品牌的綠色雞蛋的個(gè)數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點(diǎn)C作直線l∥AB,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),直線PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線PB與直線AC交于點(diǎn)E.
(1)求∠BAC的度數(shù);
(2)當(dāng)點(diǎn)D在AB上方,且CD⊥BP時(shí),求證:PC=AC;
(3)在點(diǎn)P的運(yùn)動(dòng)過程中
①當(dāng)點(diǎn)A在線段PB的中垂線上或點(diǎn)B在線段PA的中垂線上時(shí),求出所有滿足條件的∠ACD的度數(shù);
②設(shè)⊙O的半徑為6,點(diǎn)E到直線l的距離為3,連結(jié)BD,DE,直接寫出△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知P(x1,y1)Q(x2,y2),定義P、Q兩點(diǎn)的橫坐標(biāo)之差的絕對(duì)值與縱坐標(biāo)之差的絕對(duì)值的和為P、Q兩點(diǎn)的直角距離,記作d(P,Q).即d(P,Q)=|x2﹣x1|+|y2﹣y1|
如圖1,在平面直角坐標(biāo)系xOy中,A(1,4),B(5,2),則d(A,B)=|5﹣1|+|2﹣4|=6.
(1)如圖2,已知以下三個(gè)圖形:
①以原點(diǎn)為圓心,2為半徑的圓;
②以原點(diǎn)為中心,4為邊長,且各邊分別與坐標(biāo)軸垂直的正方形;
③以原點(diǎn)為中心,對(duì)角線分別在兩條坐標(biāo)軸上,對(duì)角線長為4的正方形.
點(diǎn)P是上面某個(gè)圖形上的一個(gè)動(dòng)點(diǎn),且滿足d(O,P)=2總成立.寫出符合題意的圖形對(duì)應(yīng)的序號(hào) .
(2)若直線y=k(x+3)上存在點(diǎn)P使得d(O,P)=2,求k的取值范圍.
(3)在平面直角坐標(biāo)系xOy中,P為動(dòng)點(diǎn),且d(O,P)=3,⊙M圓心為M(t,0),半徑為1.若⊙M上存在點(diǎn)N使得PN=1,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2014年湖南懷化10分)設(shè)m是不小于﹣1的實(shí)數(shù),使得關(guān)于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有兩個(gè)不相等的實(shí)數(shù)根x 1,x2.
(1)若,求的值;
(2)求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com