【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點C作直線l∥AB,點P是直線l上的一個動點,直線PA與⊙O交于另一點D,連結(jié)CD,設直線PB與直線AC交于點E.
(1)求∠BAC的度數(shù);
(2)當點D在AB上方,且CD⊥BP時,求證:PC=AC;
(3)在點P的運動過程中
①當點A在線段PB的中垂線上或點B在線段PA的中垂線上時,求出所有滿足條件的∠ACD的度數(shù);
②設⊙O的半徑為6,點E到直線l的距離為3,連結(jié)BD,DE,直接寫出△BDE的面積.
【答案】(1)45°;(2)見解析;(3)①∠ACD=15°;∠ACD=105°;∠ACD=60°;∠ACD=120°
②36或.
【解析】試題分析:(1)易得△ABC是等腰直角三角形,從而∠BAC=∠CBA=45°;
(2)分當 B在PA的中垂線上,且P在右時;B在PA的中垂線上,且P在左;A在PB的中垂線上,且P在右時;A在PB的中垂線上,且P在左時四中情況求解;
(3)①先說明四邊形OHEF是正方形,再利用△DOH∽△DFE求出EF的長,然后利用割補法求面積;②根據(jù)△EPC∽△EBA可求PC=4,根據(jù)△PDC∽△PCA可求PD PA=PC2=16,再根據(jù)S△ABP=S△ABC得到,利用勾股定理求出k2,然后利用三角形面積公式求解.
(1)解:(1)連接BC,
∵AB是直徑,
∴∠ACB=90°.
∴△ABC是等腰直角三角形,
∴∠BAC=∠CBA=45°;
(2)解:∵,∴∠CDB=∠CDP=45°,CB= CA,
∴CD平分∠BDP
又∵CD⊥BP,∴BE=EP,
即CD是PB的中垂線,
∴CP=CB= CA,
(3)① (Ⅰ)如圖2,當 B在PA的中垂線上,且P在右時,∠ACD=15°;
(Ⅱ)如圖3,當B在PA的中垂線上,且P在左,∠ACD=105°;
(Ⅲ)如圖4,A在PB的中垂線上,且P在右時∠ACD=60°;
(Ⅳ)如圖5,A在PB的中垂線上,且P在左時∠ACD=120°
②(Ⅰ)如圖6, ,
.
(Ⅱ)如圖7, ,
,
.
,
.
,
,
,
.
設BD=9k,PD=2k,
,
,
,
.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32,連接BD,AE⊥BD,垂足為E.
(1)求證:△ABE∽△DBC;
(2)求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某汽車專賣店銷售,兩種型號的新能源汽車。上周售出1輛型車和3輛型車,銷售額為96萬元,本周已售出2輛型車和1輛型車,銷售額為62萬元。
(1)求每輛型車和型車的售價各為多少?
(2)隨著汽車限購政策的推行,預計下周起,兩種型號的汽車價格在原有的基礎均有上漲,若型汽車價格上漲m%,型汽車價格上漲3m%,則同時購買一臺型車和一臺型車的費用比漲價前多12%,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ADB、△BCD都是等邊三角形,點E,F分別是AB,AD上兩個動點,滿足AE=DF.連接BF與DE相交于點G,CH⊥BF,垂足為H,連接CG.若DG=,BG=,且、滿足下列關系:,,則GH= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“創(chuàng)衛(wèi)工作人人參與,環(huán)境衛(wèi)生人人受益”,我區(qū)創(chuàng)衛(wèi)工作已進入攻堅階段.某校擬整修學校食堂,現(xiàn)需購買A、B兩種型號的防滑地磚共60塊,已知A型號地磚每塊80元,B型號地磚每塊40元.
(1)若采購地磚的費用不超過3200元,那么,最多能購買A型號地磚多少塊?
(2)某地磚供應商為了支持創(chuàng)衛(wèi)工作,現(xiàn)將A、B兩種型號的地磚單價都降低a%,這樣,該校花費了2560元就購得所需地磚,其中A型號地磚a塊,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,對角線AC,BD相交于點O,AB=5,AC=6,BD=8.
(1)求證:四邊形ABCD是菱形;
(2)過點A作AH⊥BC于點H,求AH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=kx(k≠0)沿著y軸向上平移3個單位長度后,與x軸交于點B(3,0),與y軸交于點C,拋物線y=x2+bx+c過點B、C且與x軸的另一個交點為A.
(1)求直線BC及該拋物線的表達式;
(2)設該拋物線的頂點為D,求△DBC的面積;
(3)如果點F在y軸上,且∠CDF=45°,求點F的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線交BC于點E(尺規(guī)作圖的痕跡保留在圖中了),連接EF.
(1)求證:四邊形ABEF為菱形;
(2)AE,BF相交于點O,若BF=6,AB=5,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC<BC,將△ABC沿EF折疊,使點A落在直角邊BC上的D點處,設EF與AB、AC邊分別交于點E、F,如果折疊后△CDF與△BDE均為等腰三角形,那么∠B=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com