【題目】已知拋物線y=﹣x2+bx+c經(jīng)過點A(﹣1,0),與y軸交于點B,且對稱軸為x=1.
(1)求該拋物線的解析式;
(2)點P是拋物線對稱軸上的一動點,當|PA﹣PB|取最大值時,求點P的坐標.
【答案】(1)y=﹣x2+2x+3;(2)P(1,6)
【解析】
(1)利用待定系數(shù)法即可求得;
(2)根據(jù)三角形兩邊之差小于第三邊,得,當點P在直線AB上時,|PA﹣PB|最大,根據(jù)△ABO∽△APH求得PH的長度,即可求得P的坐標.
(1)由題意得: ,解得 ,
∴該拋物線的解析式:y=﹣x2+2x+3;
(2)∵拋物線為y=﹣x2+2x+3,
令x=0,則y=3,
∴B(0,3),
∵三角形兩邊之差小于第三邊,
∴當點P在直線AB上時,|PA﹣PB|最大.
設(shè)拋物線的對稱軸直線x=1與x軸交于點H,與直線AB交于點P,
∵PH∥y軸,
∴△ABO∽△APH
∴,
∴PH=2BO=6,
∴P(1,6)即為所求.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD,AB=6,AD=2,對角線AC,BD交于點O,E為對角線AC上一點.
(1)求證:△OBC是等邊三角形;
(2)連結(jié)BE,當BE=時,求線段AE的長;
(3)在BC邊上取點F,設(shè)P,Q分別為線段AE,BF的中點,連結(jié)EF,PQ.若EF=2,求PQ的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】評價組對某區(qū)九年級教師的試卷講評課的學生參與度進行評價調(diào)查,其評價項目為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名同學的參與情況,繪制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:
(1)在這次評價中,一共抽查了 名同學;
(2)請將條形統(tǒng)計圖補充完整;
(3)如果全區(qū)有6000名九年級學生,那么在試卷評講課中,“獨立思考”的約有多少人?
(4)根據(jù)統(tǒng)計反映的情況,請你對該區(qū)的九年級同學提出一條對待試卷講評課的建議.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以AD為直徑的半圓O經(jīng)過Rt△ABC斜邊AB的兩個端點,交直角邊AC于點E;B、E是半圓弧的三等分點,的長為,則圖中陰影部分的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的一條弦,E是AB的中點,過點E作EC⊥OA于點C,過點B作⊙O的切線交CE的延長線于點D.
(1)求證:DB=DE;
(2)若AB=12,BD=5,過D點作DF⊥AB于點F,
①則cos∠EDF= ;
②求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線與x軸、y軸分別交于A、B兩點,P是以C(0,1)為圓心,1為半徑的圓上一動點,連結(jié)PA、PB.則△PAB面積的最大值是( )
A.8B.12C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E是正方形ABCD的邊BC上一點,連接AE,將線段AE繞點E順時針旋轉(zhuǎn)一定的角度得到EF,點C在EF上,連接AF交邊CD于點G.
(1)若AB=4,BF=8,求CE的長;
(2)求證:AE=BE+DG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B90°,AB4,BC2,以AC為邊作△ACE,∠ACE90°,AC=CE,延長BC至點D,使CD5,連接DE.求證:△ABC∽△CED.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com