【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)均為1的方格紙中,線段AB的端點(diǎn)均在小正方形的頂點(diǎn)上.

1)在圖中畫出以AB為底的等腰三角形ABC,點(diǎn)C在小正方形的頂點(diǎn)上,且△ABC的面積是7.5;

2)在(1)的條件下,在圖中畫出以AC為斜邊的直角三角形ACEAEEC),點(diǎn)E在小正方形的頂點(diǎn)上,且△ACE的面積是5,連接EB,并直接寫出tanAEB的值.

【答案】1)見解析;(2),畫圖見解析,

【解析】

1)直接利用網(wǎng)格結(jié)合等腰三角形的性質(zhì)得出答案;

2)直接利用直角三角形的性質(zhì)結(jié)合銳角三角函數(shù)關(guān)系得出答案.

:1)如圖所示:ABC即為所求;

2)如圖所示:ACE即為所求,

延長(zhǎng)EA,交網(wǎng)格于點(diǎn)G,連接BG,

tan∠AEB

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=6,若點(diǎn)E,F分別在AB,CD上,且BE=2AE,DF=2FCG,H分別是AC的三等分點(diǎn),則四邊形EHFG的面積為(

A. 1B. C. 2D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位800名職工積極參加向貧困地區(qū)學(xué)校捐書活動(dòng),為了解職工的捐書數(shù)量,采用隨機(jī)抽樣的方法抽取30名職工的捐書數(shù)量作為樣本,對(duì)他們的捐書數(shù)量進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果共有4本、5本、6本、7本、8本五類,分別用A、BC、D、E表示,根據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制成了如圖所示的不完整的條形統(tǒng)計(jì)圖,

由圖中給出的信息解答下列問題:

1)補(bǔ)全條形統(tǒng)計(jì)圖;

2)求這30名職工捐書本數(shù)的平均數(shù),寫出眾數(shù)和中位數(shù);

3)估計(jì)該單位800名職工共捐書多少本?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,把一條拋物線先向上平移1個(gè)單位長(zhǎng)度,然后繞原點(diǎn)旋轉(zhuǎn)180°得到拋物線yx2+5x+6.則原拋物線的頂點(diǎn)坐標(biāo)是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進(jìn)了一種新款小電器,為了尋找合適的銷售價(jià)格,進(jìn)行了為期5周的試營銷,試營銷的情況如表所示:

1

2

3

4

5

售價(jià)/(元/臺(tái))

50

40

60

55

45

銷售/臺(tái)

360

420

300

330

390

已知該款小電器的進(jìn)價(jià)每臺(tái)30元,設(shè)該款小電器每臺(tái)的售價(jià)為x元,每周的銷量為y臺(tái).

1)觀察表中的數(shù)據(jù),推斷yx滿足什么函數(shù)關(guān)系,并求出這個(gè)函數(shù)關(guān)系式;

2)若想每周的利潤為9000元,則其售價(jià)應(yīng)定為多少元?

3)若每臺(tái)小電器的售價(jià)不低于40元,但又不能高于進(jìn)價(jià)的2倍,則如何定價(jià)才能更快地減少庫存?此時(shí)每周最多可銷售多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線yax2+ax+aa≠0)交x軸于點(diǎn)A和點(diǎn)B(點(diǎn)A在點(diǎn)B左邊),交y軸于點(diǎn)C,連接AC,tanCAO3

1)如圖1,求拋物線的解析式;

2)如圖2,D是第一象限的拋物線上一點(diǎn),連接DB,將線段DB繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°,得到線段DE(點(diǎn)B與點(diǎn)E為對(duì)應(yīng)點(diǎn)),點(diǎn)E恰好落在y軸上,求點(diǎn)D的坐標(biāo);

3)如圖3,在(2)的條件下,過點(diǎn)Dx軸的垂線,垂足為H,點(diǎn)F在第二象限的拋物線上,連接DFy軸于點(diǎn)G,連接GHsinDGH,以DF為邊作正方形DFMN,PFM上一點(diǎn),連接PN,將△MPN沿PN翻折得到△TPN(點(diǎn)M與點(diǎn)T為對(duì)應(yīng)點(diǎn)),連接DT并延長(zhǎng)與NP的延長(zhǎng)線交于點(diǎn)K,連接FK,若FK,求cosKDN的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知,,點(diǎn)點(diǎn)開始沿邊向點(diǎn)的速度移動(dòng);點(diǎn)從點(diǎn)開始沿邊向點(diǎn)的速度移動(dòng),如果、同時(shí)出發(fā),用表示移動(dòng)的時(shí)間,那么:

1)設(shè)的面積為,求關(guān)于的函數(shù)解析式.

2)當(dāng)的面積最大時(shí),沿直線翻折后得到,試判斷點(diǎn)是否落在直線上,并說明理由.

3)當(dāng)為何值時(shí),相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A1,3)為雙曲線上的一點(diǎn),連接AO并延長(zhǎng)與雙曲線在第三象限交于點(diǎn)B,M軸正半軸一上點(diǎn),連接MA并延長(zhǎng)與雙曲線交于點(diǎn)N,連接BMBN,已知MBN的面積為,則點(diǎn)N的坐標(biāo)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AC為⊙O的直徑,D的中點(diǎn),過點(diǎn)DDEAC,交BC的延長(zhǎng)線于點(diǎn)E

1)判斷DE與⊙O的位置關(guān)系,并說明理由;

2)若CE,AB6,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案