分析 根據(jù)平移和翻折的性質(zhì)得到△MPN是等腰直角三角形,于是得到當(dāng)PM最小時(shí),對(duì)角線(xiàn)MN最小,即AE取最小值,當(dāng)AE⊥BD時(shí),AE取最小值,過(guò)D作DF⊥AB于F,根據(jù)平行四邊形的面積得到DF=2,根據(jù)等腰直角三角形的性質(zhì)得到AF=DF=2,由勾股定理得到BD=$\sqrt{D{F}^{2}+B{F}^{2}}$=$\sqrt{5}$,根據(jù)三角形的面積得到AE=$\frac{DF•AB}{BD}$=$\frac{2×3}{\sqrt{5}}$=$\frac{6\sqrt{5}}{5}$,即可得到結(jié)論.
解答 解:∵△ABE≌△CDF≌△PMQ,
∴AE=DF=PM,∠EAB=∠FDC=∠MPQ,
∵△ADE≌△BCG≌△PNR,
∴AE=BG=PN,∠DAE=∠CBG=∠RPN,
∴PM=PN,
∵四邊形ABCD是平行四邊形,
∴∠DAB=∠DCB=45°,
∴∠MPN=90°,
∴△MPN是等腰直角三角形,
當(dāng)PM最小時(shí),對(duì)角線(xiàn)MN最小,即AE取最小值,
∴當(dāng)AE⊥BD時(shí),AE取最小值,
過(guò)D作DF⊥AB于F,
∵平行四邊形ABCD的面積為6,AB=3,
∴DF=2,
∵∠DAB=45°,
∴AF=DF=2,
∴BF=1,
∴BD=$\sqrt{D{F}^{2}+B{F}^{2}}$=$\sqrt{5}$,
∴AE=$\frac{DF•AB}{BD}$=$\frac{2×3}{\sqrt{5}}$=$\frac{6\sqrt{5}}{5}$,
∴MN=$\sqrt{2}$AE=$\frac{6\sqrt{10}}{5}$,
故答案為:$\frac{6\sqrt{10}}{5}$.
點(diǎn)評(píng) 本題考查了平移的性質(zhì),翻折的性質(zhì),勾股定理,平行四邊形的性質(zhì),正確的識(shí)別圖形是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 35° | B. | 55° | C. | 65° | D. | 70° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | DE⊥AC | B. | CE=2AE | ||
C. | $\frac{{S}_{△ADE}}{{S}_{四邊形DBCE}}$=1 | D. | $\frac{{S}_{△ADE}}{{S}_{四邊形DBCE}}$=$\frac{1}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$m | B. | 2$\sqrt{3}$m | C. | 4$\sqrt{3}$m | D. | 6$\sqrt{3}$m |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12.5° | B. | 15° | C. | 20° | D. | 22.5° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com