【題目】如圖,在ABC中,D是BC邊上的點(diǎn)(不與點(diǎn)B、C重合),連結(jié)AD.

問題引入:

(1)如圖,當(dāng)點(diǎn)D是BC邊上的中點(diǎn)時,SABD:SABC=   ;當(dāng)點(diǎn)D是BC邊上任意一點(diǎn)時,SABD:SABC=   (用圖中已有線段表示).

探索研究:

(2)如圖,在ABC中,O點(diǎn)是線段AD上一點(diǎn)(不與點(diǎn)A、D重合),連結(jié)BO、CO,試猜想SBOC與SABC之比應(yīng)該等于圖中哪兩條線段之比,并說明理由.

拓展應(yīng)用:

(3)如圖,O是線段AD上一點(diǎn)(不與點(diǎn)A、D重合),連結(jié)BO并延長交AC于點(diǎn)F,連結(jié)CO并延長交AB于點(diǎn)E,試猜想的值,并說明理由.

【答案】(1)1:2,BD:BC;

(2)SBOC:SABC=OD:AD,理由見解析;

(3)=1,理由見解析

【解析】

試題分析:(1)根據(jù)三角形的面積公式,兩三角形等高時,可得兩三角形底與面積的關(guān)系,可得答案;

(2)根據(jù)三角形的面積公式,兩三角形等底時,可得兩三角形的高與面積的關(guān)系,可得答案;

(3)根據(jù)三角形的面積公式,兩三角形等底時,可得兩三角形的高與面積的關(guān)系,再根據(jù)分式的加減,可得答案

試題解析:(1)如圖,當(dāng)點(diǎn)D是BC邊上的中點(diǎn)時,SABD:SABC=1:2;當(dāng)點(diǎn)D是BC邊上任意一點(diǎn)時,SABD:SABC=BD:BC,

故答案為:1:2,BD:BC;

(2)SBOC:SABC=OD:AD,

如圖作OEBC與E,作AFBC與F,,

OEAF,

∴△OED∽△AFD,

,

(3)=1,理由如下:

由(2)得,

===1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,AM∥CN,點(diǎn) B 為平面內(nèi)一點(diǎn),AB⊥BC B,過 B BD⊥ AM.

(1)求證:∠ABD=∠C;

(2)如圖 2,在(1)問的條件下,分別作∠ABD、∠DBC 的平分線交 DM 于 E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,

①求證:∠ABF=∠AFB;

②求∠CBE 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把正整數(shù)1,2,3,4,…排列成如圖所示的一個表.

1)用一正方形在表中隨意框住4個數(shù),把其中最大的數(shù)記為x,另三個數(shù)用含x的式子表示出來,從大到小依次是   ,   ,   

2)在(1)的前提下,當(dāng)被框住的4個數(shù)之和等于984時,x位于該表的第幾行第幾列?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,,,分別是,的中點(diǎn),

1)求證:四邊形是菱形;

2)求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年5月,某縣突降暴雨,造成山體滑坡,橋梁垮塌,房屋大面積受損,該省民政廳急需將一批帳篷送往災(zāi)區(qū).現(xiàn)有甲、乙兩種貨車,已知甲種貨車比乙種貨車每輛車多裝20件帳篷,且甲種貨車裝運(yùn)1 000件帳篷與乙種貨車裝運(yùn)800件帳篷所用車輛相等.

(1)求甲、乙兩種貨車每輛車可裝多少件帳篷;

(2)如果這批帳篷有1 490件,用甲、乙兩種汽車共16輛裝運(yùn),甲種車輛剛好裝滿,乙種車輛最后一輛只裝了50件,其余裝滿,求甲、乙兩種貨車各有多少輛.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CDAB,垂足為D,點(diǎn)EBC上,EFAB,垂足為F

(1)CDEF平行嗎?為什么?

(2)如果∠1=2,且∠3=120°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了解本校學(xué)生對球類運(yùn)動的愛好情況,采用抽樣的方法,從乒乓球、羽毛球、籃球和排球四個方面調(diào)查了若干名學(xué)生,在還沒有繪制成功的“折線統(tǒng)計圖”與“扇形統(tǒng)計圖”中,請你根據(jù)已提供的部分信息解答下列問題.

(1)在這次調(diào)查活動中,一共調(diào)查了 名學(xué)生,并請補(bǔ)全統(tǒng)計圖.

(2)“羽毛球”所在的扇形的圓心角是 度.

(3)若該校有學(xué)生1200名,估計愛好乒乓球運(yùn)動的約有多少名學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐上,且點(diǎn)A(0,2),點(diǎn)C(,0),如圖所示:拋物線經(jīng)過點(diǎn)B。

(1)求點(diǎn)B的坐標(biāo);

(2)求拋物線的解析式;

(3)在拋物線上是否還存在點(diǎn)P(點(diǎn)B除外),使ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點(diǎn)P的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以正方形的邊為邊作等邊三角形連接的度數(shù)為______

查看答案和解析>>

同步練習(xí)冊答案