【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),y是關(guān)于的二次函數(shù),拋物線經(jīng)過(guò)點(diǎn).拋物線經(jīng)過(guò)點(diǎn)拋物線經(jīng)過(guò)點(diǎn)拋物線經(jīng)過(guò)點(diǎn)則下列判斷:
①四條拋物線的開(kāi)口方向均向下;
②當(dāng)時(shí),四條拋物線表達(dá)式中的均隨的增大而增大;
③拋物線的頂點(diǎn)在拋物線頂點(diǎn)的上方;
④拋物線與軸交點(diǎn)在點(diǎn)的上方.
其中正確的是
A.①②④B.①③④
C.①②③D.②③④
【答案】A
【解析】
根據(jù)BC的對(duì)稱軸是直線x=1.5,的對(duì)稱軸是直線x=1,畫(huà)大致示意圖,即可進(jìn)行判定.
解:①由可知,四條拋物線的開(kāi)口方向均向下,
故①正確;
②和的對(duì)稱軸是直線x=1.5,和的對(duì)稱軸是直線x=1,開(kāi)口方向均向下,所以當(dāng)時(shí),四條拋物線表達(dá)式中的均隨的增大而增大,
故②正確;
③和的對(duì)稱軸都是直線x=1.5,D關(guān)于直線x=1.5的對(duì)稱點(diǎn)為(-1,-2),而A點(diǎn)坐標(biāo)為(-2,-2),可以判斷比更陡,所以拋物線的頂點(diǎn)在拋物線頂點(diǎn)的下方,
故③錯(cuò)誤;
④的對(duì)稱軸是直線x=1, C關(guān)于直線x=1的對(duì)稱點(diǎn)為(-1,3),可以判斷出拋物線與軸交點(diǎn)在點(diǎn)的上方,
故④正確.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝店老板到廠家選購(gòu)、兩種品牌的羽絨服,品牌羽絨服每件進(jìn)價(jià)比品牌羽絨服每件進(jìn)價(jià)多元,若用元購(gòu)進(jìn)種羽絨服的數(shù)量是用元購(gòu)進(jìn)種羽絨服數(shù)量的倍.
(1)求、兩種品牌羽絨服每件進(jìn)價(jià)分別為多少元?
(2)若品牌羽絨服每件售價(jià)為元,品牌羽絨服每件售價(jià)為元,服裝店老板決定一次性購(gòu)進(jìn)、兩種品牌羽絨服共件,在這批羽絨服全部出售后所獲利潤(rùn)不低于元,則最少購(gòu)進(jìn)品牌羽絨服多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】菱形ABCD在坐標(biāo)平面內(nèi)的位置如圖所示,已知A(-1,5),D(-2,2),對(duì)角線交點(diǎn)M(-3,3),如果雙曲線(x<0)與菱形ABCD有公共點(diǎn),那么k的取值范圍是________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春天是放風(fēng)箏的好時(shí)節(jié),小明為了讓風(fēng)箏順利起飛,特地將風(fēng)箏放在坡度為1:2.4的山坡上,并站在視線剛好與風(fēng)箏起飛點(diǎn)A齊平的B處,起風(fēng)后小明開(kāi)始往下跑26米至坡底C處,并繼續(xù)沿平地向前跑16米到達(dá)D處后站在原地開(kāi)始調(diào)整,小明將手中的線軸剛好舉到與視線齊平處測(cè)得風(fēng)箏的仰角是37°,此時(shí)風(fēng)箏恰好升高到起飛時(shí)的正上方E處.已知小明視線距地面高度為1.5米,圖中風(fēng)箏E、A、B、C、D五點(diǎn)在同一平面,則風(fēng)箏上升的垂直距離AE約為( )米.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A.34.2B.32.7C.31.2D.22.7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,E為對(duì)角線AC上一點(diǎn),連接DE,作EF⊥DE,交AD于點(diǎn)F,G為AD邊上一點(diǎn),且AB=AG,連接GE.
(1)如圖1,若點(diǎn)G為DF的中點(diǎn),AF=2,EG=4,∠B=60°,求AC的長(zhǎng);
(2)如圖2,連接CG交DE于點(diǎn)H,若EG∥CD,∠ACB=∠DCG,求證:∠ECG=2∠AEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°.
(1)如圖1,若直線AD與BC相交于M,過(guò)點(diǎn)B作AM的垂線,垂足為D,連接CD并延長(zhǎng)BD至E,使得DE=DC,過(guò)點(diǎn)E作EF⊥CD于F,證明:AD=EF+BD.
(2)如圖2,若直線AD與CB的延長(zhǎng)線相交于M,過(guò)點(diǎn)B作AM的垂線,垂足為D,連接CD并延長(zhǎng)BD至E,使得DE=DC,過(guò)點(diǎn)E作EF⊥CD交CD的延長(zhǎng)線于F,探究:AD、EF、BD之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)的圖像與反比例函數(shù)的圖像交于點(diǎn),與軸交于點(diǎn),若,且.
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)若點(diǎn)為軸上一點(diǎn),是等腰三角形,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某一廣告墻PQ旁有兩根直立的木桿AB和CD,某一時(shí)刻在太陽(yáng)光下,木桿CD的影子剛好不落在廣告墻PQ上.
(1)畫(huà)出太陽(yáng)光線CE和AB的影子BF;
(2)若AB=10米,CD=6米,CD到PQ的距離DQ的長(zhǎng)為8米,求此時(shí)木桿AB的影子BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c的圖象經(jīng)過(guò)點(diǎn)C,交x軸于點(diǎn)A(﹣1,0)、B(4,0)(A點(diǎn)在B點(diǎn)左側(cè)),頂點(diǎn)為D.
(1)求拋物線的解析式;
(2)將△ABC沿直線BC對(duì)折,點(diǎn)A的對(duì)稱點(diǎn)為A′,試求A′的坐標(biāo);
(3)拋物線的對(duì)稱軸上是否存在點(diǎn)P,使∠BPC=∠BAC?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com