【題目】如圖,在△ABC中,BDAC邊上的高,點(diǎn)E在邊AB上,聯(lián)結(jié)CEBD于點(diǎn)O,且AF是∠BAC的平分線,交BC于點(diǎn)F,交DE于點(diǎn)G.

(1)求證:CEAB.

(2)求證:.

【答案】(1)證明見解析;(2)證明見解析.

【解析】

1)首先判定RtADBRtODC,得出∠ABD =OCD,然后通過三角形內(nèi)角和轉(zhuǎn)換得出∠OEB = 90°,進(jìn)而得出CEAB;

2)首先判定△ADB∽△AEC,得出,然后再判定△DAE∽△BAC,得出,進(jìn)而得出.

(1),

.

BDAC邊上的高,

∴∠BDC = 90°,△ADB和△ODC是直角三角形.

RtADBRtODC.

∴∠ABD =OCD.

又∵∠EOB=DOC,∠DOC+OCD+ODC=180°,

EOB +ABD+OEB =180°.

∴∠OEB = 90°.

CEAB.

(2)在△ADB和△AEC中,

∵∠BAD=CAE,∠ABD =OCD,

∴△ADB∽△AEC.

, .

在△DAE和△BAC

∵∠DAE =BAC.

∴△DAE∽△BAC.

AF是∠BAC的平分線,

,即.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC120°,以BC為邊向外作等邊△BCD.

()ABD+ACD_____.

()BAD_____.

()AB3,AC2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩個(gè)黑布袋,A布袋中有四個(gè)除標(biāo)號(hào)外完全相同的小球,小球上分別標(biāo)有數(shù)字0,1,23B布袋中有三個(gè)除標(biāo)號(hào)外完全相同的小球,小球上分別標(biāo)有數(shù)字0,12.小明先從A布袋中隨機(jī)取出一個(gè)小球,用m表示取出的球上標(biāo)有的數(shù)字,再從B布袋中隨機(jī)取出一個(gè)小球,用n表示取出的球上標(biāo)有的數(shù)字.

1)若用(m,n)表示小明取球時(shí)mn 的對(duì)應(yīng)值,用列表法(或畫樹狀圖)表示出(m,n)的所有取值;

2)求關(guān)于x的一元二次方程有實(shí)數(shù)根的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某中學(xué)學(xué)生課余生活情況,對(duì)喜愛看課外書、體育活動(dòng)、看電視、社會(huì)實(shí)踐四個(gè)方面的人數(shù)進(jìn)行調(diào)查統(tǒng)計(jì).現(xiàn)從該校隨機(jī)抽取名學(xué)生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學(xué)生只能選擇其中一項(xiàng)).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.由圖中提供的信息,解答下列問題:

(1)求n的值;

(2)若該校學(xué)生共有1200人,試估計(jì)該校喜愛看電視的學(xué)生人數(shù);

(3)若調(diào)查到喜愛體育活動(dòng)的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生,求恰好抽到2名男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系內(nèi),直線分別與軸、軸相交于點(diǎn)和點(diǎn),直線為過點(diǎn)的旋轉(zhuǎn)直線,交線段于點(diǎn),直線軸的正半軸的夾角為.

1)當(dāng)直線旋轉(zhuǎn)到與線段垂直時(shí),求的值;

2)當(dāng)直線旋轉(zhuǎn)到過線段中點(diǎn)時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y1=的圖象與一次函數(shù)y2=的圖象交于點(diǎn)A,B,點(diǎn)B的橫坐標(biāo)實(shí)數(shù)4,點(diǎn)P(1,m)在反比例函數(shù)y1=的圖象上.

(1)求反比例函數(shù)的表達(dá)式;

(2)觀察圖象回答:當(dāng)x為何范圍時(shí),y1>y2;

(3)求PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,AB =1,DAB的中點(diǎn),∠ACD = 90°,∠DCB = 45°,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E,FBC上兩點(diǎn),且BE=CF,AF=DE

求證:(1△ABF≌△DCE;

  1. 四邊形ABCD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種文具,進(jìn)價(jià)為5元/件.售價(jià)為6元/件時(shí),當(dāng)天的銷售量為100件.在銷售過程中發(fā)現(xiàn):售價(jià)每上漲0.5元,當(dāng)天的銷售量就減少5件.設(shè)當(dāng)天銷售單價(jià)統(tǒng)一為元/件(,且是按0.5元的倍數(shù)上漲),當(dāng)天銷售利潤為元.

1)求的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);

2)要使當(dāng)天銷售利潤不低于240元,求當(dāng)天銷售單價(jià)所在的范圍;

3)若每件文具的利潤不超過,要想當(dāng)天獲得利潤最大,每件文具售價(jià)為多少元?并求出最大利潤.

查看答案和解析>>

同步練習(xí)冊(cè)答案